
Modifying Code in the CLM

CLM Tutorial 2019
Bill Sacks, Jackie Shuman, Danica Lombardozzi

NCAR is sponsored by the National Science Foundation

Why might you modify the code?
• Improve process representation based on new scientific findings

• Introduce a new concept

• Test the sensitivity of an existing representation

• And more…

Outline

• GitHub walkthrough

• Overview of modifying the code

• #1 best practice: don’t repeat yourself

• CLM arrays, loops and filters

• Practical exercises

GitHub walkthrough

Top-level CTSM clone

components cime

scripts
cism (land ice)

mosart (river
routing)

Obtained via manage_externals

src

bld

...
biogeochem

biogeophys

main

utils

...

Source code changes anywhere in
this directory tree affect all cases
created from here.

If you have any existing cases
created from a clone which are
still running, or which you might
want to continue: Then create a
new git clone for any new work
(i.e., a separate git clone for each
git branch).

Use grep to find specific variables / key words of interest.

Fast search, only covers CTSM git repository (not externals):
git grep -i ozone

To search everything from this directory down, including externals (note dot at end):
grep -r -i ozone .

(1) create a new case

(2) invoke case.setup

(3) build the executable (./case.build)

(4) submit your run to the batch queue

Review: The 4 commands to run CLM

Make modifications any time before compiling.

Also okay to make modifications after
compiling. Then need to rerun ./case.build.

For more elaborate mods…

• Keep in mind that some examples are better than others, or at
least more appropriate for the changes you want to make

• So: best to check in with experienced CLM developers initially

Also look through development guides on the GitHub wiki –
though these are still a work-in-progress.

Can follow examples from existing code

Code language

CLM – like most of CESM – is
written in modern Fortran

(Fortran 90/95/2003)

We allow – and encourage! –
the use of Fortran 2003

object orientation.

Please don’t
do this

subroutine SaturatedExcessRunoffTopmodel (...)
! Compute fsat
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
fff = 0.5_r8
if (frost_table(c) > zwt_perched(c) .and. frost_table(c) <= zwt(c)) then

fsat(c) = wtfact(c) * exp(-0.5_r8*fff*zwt_perched(c))
else

fsat(c) = wtfact(c) * exp(-0.5_r8*fff*zwt(c))
end if

end do

! Set fsat to zero for crop columns
if (crop_fsat_equals_zero) then

do fc = 1, num_hydrologyc
c = filter_hydrologyc(fc)
l = col%landunit(c)
if(lun%itype(l) == istcrop) fsat(c) = 0._r8

end do
endif

! Compute qflx_sat_excess_surf
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
qflx_sat_excess_surf(c) = fsat(c) * qflx_rain_plus_snomelt(c)
if (col%urbpoi(c)) then

qflx_sat_excess_surf(c) = qflx_sat_excess_surf(c) + qflx_floodc(c)
end if

end do
end subroutine SaturatedExcessRunoffTopmodel

subroutine SaturatedExcessRunoffVic (...)
! Compute fsat
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
ex(c) = b_infil(c) / (1._r8 + b_infil(c))
! fsat is equivalent to A in VIC papers
fsat(c) = 1._r8 - (1._r8 - top_moist_limited(c) / top_max_moist(c))**ex(c)

end do

! Set fsat to zero for crop columns
if (crop_fsat_equals_zero) then

do fc = 1, num_hydrologyc
c = filter_hydrologyc(fc)
l = col%landunit(c)
if(lun%itype(l) == istcrop) fsat(c) = 0._r8

end do
endif

! Compute qflx_sat_excess_surf
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
qflx_sat_excess_surf(c) = fsat(c) * qflx_rain_plus_snomelt(c)
if (col%urbpoi(c)) then

qflx_sat_excess_surf(c) = qflx_sat_excess_surf(c) + qflx_floodc(c)
end if

end do
end subroutine SaturatedExcessRunoffVic

• Why not to copy & paste existing code

Ø For readers of the code, it’s hard to tell how the two versions differ

Ø If the shared piece changes, it’s hard to realize that both routines
need to change

Ø And once they diverge, it’s very hard to tell if the divergence is
intentional or accidental

• Why not to copy & paste your own code

Ø It will be harder to make changes that apply to each instance

Ø It’s harder to have confidence: need to separately test each
instance of the duplicated code

Ø If the instances are subtly different, it’s hard to see that, and
introducing a new instance is error-prone

Instead
do this

subroutine SaturatedExcessRunoff (...)
! Compute fsat
select case (this%fsat_method)
case (FSAT_METHOD_TOPMODEL)

call this%ComputeFsatTopmodel(...)
case (FSAT_METHOD_VIC)

call this%ComputeFsatVic(...)
case default

call endrun(subname//' ERROR: Unrecognized fsat_method')
end select

! Set fsat to zero for crop columns
if (crop_fsat_equals_zero) then

do fc = 1, num_hydrologyc
c = filter_hydrologyc(fc)
l = col%landunit(c)
if(lun%itype(l) == istcrop) fsat(c) = 0._r8

end do
endif

! Compute qflx_sat_excess_surf
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
qflx_sat_excess_surf(c) = fsat(c) * qflx_rain_plus_snomelt(c)
if (col%urbpoi(c)) then

qflx_sat_excess_surf(c) = qflx_sat_excess_surf(c) + qflx_floodc(c)
end if

end do
end subroutine SaturatedExcessRunoff

subroutine ComputeFsatTopmodel(...)
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
fff = 0.5_r8
if (frost_table(c) > zwt_perched(c) .and. frost_table(c) <= zwt(c)) then

fsat(c) = wtfact(c) * exp(-0.5_r8*fff*zwt_perched(c))
else

fsat(c) = wtfact(c) * exp(-0.5_r8*fff*zwt(c))
end if

end do
end subroutine ComputeFsatTopmodel

subroutine ComputeFsatVic(...)
do fc = 1, num_hydrologyc

c = filter_hydrologyc(fc)
ex(c) = b_infil(c) / (1._r8 + b_infil(c))
fsat(c) = 1._r8 - (1._r8 - top_moist_limited(c) / top_max_moist(c))**ex(c)

end do
end subroutine ComputeFsatVic

Gridcell

Glacier Lake

Landunit

Column

PFT

Urban
Vegetated

Soil

Crop

PFT1 PFT2 PFT3 PFT4 …

Unirrig Irrig Unirrig Irrig

Crop1 Crop1 Crop2 Crop2 …

Roof

Sun Wall

Shade
Wall

Pervious

Impervious

TBD

MD

HD

Elevation
classes

Gridcell

Glacier Lake

Landunit

Column

PFT

Urban
Vegetated

Soil

Crop

PFT1 PFT2 PFT3 PFT4 …

Unirrig Irrig Unirrig Irrig

Crop1 Crop1 Crop2 Crop2 …

L

G

UT,H,M

C1I V
PFT4

V
PFT3

V
PFT1

V
PFT2

C1U

C2U C2I

Roof

Sun Wall

Shade
Wall

Pervious

Impervious

TBD

MD

HD

0.1 0.2 0.0 0.0 0.0 0.3 0.2 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3 0.0 0.0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o3coefgsun_patch

patch index (p)

bounds%begp bounds%endp

35 36 37 38 39 40 41 42

3.7 5.2 0.0 8.9 0.0 2.7 0.9 0.0qflx_drain_col

column index (c)

bounds%begc bounds%endc

The _patch or _col often doesn't appear in the body of the code,

but you can find it by looking at the 'associate' statement

for a subroutine, which defines aliases:

associate(&
o3coefvsun => this%o3coefvsun_patch, &
)

(ozone coefficient

for conductance,

sunlit leaves)

0.1 0.2 0.0 0.0 0.0 0.3 0.2 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3 0.0 0.0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o3coefgsun_patch

patch index (p)

bounds%begp bounds%endp

You could loop through a patch-level array like this:

do p = bounds%begp, bounds%endp

o3coefgsun(p) = [some expression]

0.1 0.2 0.0 0.0 0.0 0.3 0.2 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3 0.0 0.0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o3coefgsun_patch

patch index (p)

bounds%begp bounds%endp

You could loop through a patch-level array like this:

do p = bounds%begp, bounds%endp
c = patch%column(p)

o3coefgsun(p) = [some expression]

This line is only needed

if you need to access

column-level arrays

in the same loop

But typically in CLM we use “filters” for efficiency

(computing time is money)...

0.1 0.2 0.0 0.0 0.0 0.3 0.2 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3 0.0 0.0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o3coefgsun_patch

patch index (p)

These patches are non-vegetated (glacier, lake, wetland or urban)

Filter of vegetated patches not covered by snow:

And these patches are covered by snow

1 2 3 4 5 6 7

11 12 15 16 22 23 26filter_exposedvegp

filter index (fp)

Gridcell

Glacier Lake

Landunit

Column

PFT

Urban
Vegetated

Soil

Crop

PFT1 PFT2 PFT3 PFT4 …

Unirrig Irrig Unirrig Irrig

Crop1 Crop1 Crop2 Crop2 …

L

G

UT,H,M

C1I V
PFT4

V
PFT3

V
PFT1

V
PFT2

C1U

C2U C2I

Roof

Sun Wall

Shade
Wall

Pervious

Impervious

TBD

MD

HD

0.1 0.2 0.0 0.0 0.0 0.3 0.2 0.7 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.3 0.0 0.0

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

o3coefgsun_patch

patch index (p)

1 2 3 4 5 6 7

11 12 15 16 22 23 26filter_exposedvegp

filter index (fp)

A loop using this filter looks like this:

do fp = 1, num_exposedvegp
p = filter_exposedvegp(fp)

o3coefgsun(p) = [some expression]

7 in this case

Overview of today’s exercises
1) Run a control case for 5 days

Ø Create and setup a case
Ø Change namelist to enable ozone damage
Ø Deal with a typo in user_nl_clm
Ø Build and submit case

2) Run another case where we change the ozone plant stress coefficient
Ø Create a new git clone and branch for this work
Ø Change OzoneMod.F90
Ø Create and setup another case
Ø Deal with a compilation error
Ø Build and submit case
Ø Run will (probably) crash

3) Run another case that is the same as (2) but built in DEBUG mode
Ø Create and setup another case
Ø Change a setting in env_build.xml to build in DEBUG mode rather than optimized mode
Ø Build and submit case
Ø Run will crash; examine log files to determine the cause of the crash
Ø Fix the problem, rebuild and resubmit

Bonus exercises
4) Rebuild and resubmit the non-debug experimental case

Ø Rebuild and resubmit
Ø Compare with the control case

5) Add a history (diagnostic) field
Ø Make a source code change to add a history field
Ø Rebuild and resubmit the earlier case
Ø Examine output to confirm the field has been added correctly

Notes about today’s exercises

Today’s exercises are largely about how to track down
problems – typos, bugs, etc. So the exercises will often ask
you to do something that isn’t quite right. If you notice this
immediately, give yourself a pat on the back – but to get the
most benefit from these exercises, you should type things in
exactly as written, bugs and all. We’ll work through these
problems together in the following slides.

As in previous exercises: green text in a fixed-width font
indicates things you will type, either at the command line or
in an editor.

Start Practical Here

Exercise 3.1:
Namelist changes

to set up control simulation

Create a new git clone

(1) Create a directory for today’s tutorial
cd ~
mkdir practical3
cd practical3

(2) Create a fresh clone
git clone -b release-clm5.0 https://github.com/ESCOMP/ctsm.git clm5.0_control
cd clm5.0_control
./manage_externals/checkout_externals

We’ll start with a fresh git clone for today’s work to avoid problems
in case you changed anything yesterday.

Create a new case
(3) Create a new case
cd cime/scripts
./create_newcase --case ~/clm_tutorial_cases/ozone_control --compset
I2000Clm50SpGs --res f45_g37 --run-unsupported --project UCGD0004

Gs in the compset name indicates a stub glacier model (rather than CISM); we’re using that to speed
up the build

--run-unsupported is needed because this compset/resolution combination isn’t in our test suite

(4) Do the initial case setup
cd ~/clm_tutorial_cases/ozone_control
./xmlchange JOB_QUEUE=R4231261 --subgroup case.run --force
./xmlchange JOB_WALLCLOCK_TIME=00:05:00
./case.setup

Change some namelist options
(5) Output daily diagnostics, since we’re only running for the default 5 days: Add
the following to user_nl_clm:
hist_nhtfrq = -24.0
hist_mfilt = 6

--hist_mfilt puts all output from this 5-day run in a single file

(6) Change two physics options: turn on ozone (which is central to this exercise),
and turn off plant hydraulic stress (because the interaction between ozone and
plant hydraulic stress is counter-intuitive). Add the following to user_nl_clm:
use_ozone = .true.
use_hydrstress = .false.

(7) Run the script to generate namelists to make sure your namelist settings don’t
have any typos:
./preview_namelists

What happened?

(See next slide for solution)

Change some namelist options
(8) Fix this setting in user_nl_clm:
hist_nhtfrq = -24

(9) Run the script to generate namelists to make sure your namelist settings don’t
have any typos:
./preview_namelists

This time you should see:

Finished creating component namelists

Build and submit the run
(10) Build the model:
qcmd -q R4231261 -- ./case.build

You should see the following, indicating that the build completed successfully:
MODEL BUILD HAS FINISHED SUCCESSFULLY

Since this will take a few minutes, you can go on to Exercise 3.2 in a new terminal
window while waiting for the build to finish.

(11) Submit the run:
./case.submit

If you had an account on cheyenne
before the tutorial, make sure the
PBS_ACCOUNT is set to UCGD0004
before you build.

Check for successful completion
(12) When the job finishes, confirm that it completed successfully:
tail CaseStatus

You should see something like the following:

2019-02-03 15:22:27: model execution starting

2019-02-03 15:22:47: model execution success

2019-02-03 15:22:47: case.run success

2019-02-03 15:22:52: st_archive starting

2019-02-03 15:22:53: st_archive success

Exercise 3.2:
Source code changes

to set up experimental simulation

Create a new git clone

(1) Create a fresh clone
cd ~/practical3/
git clone -b release-clm5.0 https://github.com/ESCOMP/ctsm.git clm5.0_ozone_mods
cd clm5.0_ozone_mods
./manage_externals/checkout_externals

Before moving on to the code changes on the next slide, feel free to browse
through the contents of the src/ subdirectory to get a general feel for its contents.
You can also come back and do this later, such as while waiting for the model to
build.

We recommend creating a new git clone before making source code
changes to avoid interfering with any ongoing cases from your
previous clone.

Edit OzoneMod.F90
(2) Open src/biogeophys/OzoneMod.F90 in an editor and add a line:
On line 377, add the following:
o3coefgsun(p) = o3coefgsun(c)^3._r8

The next slide shows this change in context, with some helpful notes about the
code in this loop.

Save and exit your editor, then confirm the change by typing the following git
command (type q to exit the diff):
git diff

Reminder: You might notice some issues
with this new line. Play along: we’ll fix
them together.

Edit OzoneMod.F90

do fp = 1, num_exposedvegp
p = filter_exposedvegp(fp)
c = patch%column(p)

! Ozone stress for shaded leaves
call CalcOzoneStressOnePoint(&

forc_ozone=forc_ozone, forc_pbot=forc_pbot(c), forc_th=forc_th(c), &
rs=rssha(p), rb=rb(p), ram=ram(p), &
tlai=tlai(p), tlai_old=tlai_old(p), pft_type=patch%itype(p), &
o3uptake=o3uptakesha(p), o3coefv=o3coefvsha(p), o3coefg=o3coefgsha(p))

! Ozone stress for sunlit leaves
call CalcOzoneStressOnePoint(&

forc_ozone=forc_ozone, forc_pbot=forc_pbot(c), forc_th=forc_th(c), &
rs=rssun(p), rb=rb(p), ram=ram(p), &
tlai=tlai(p), tlai_old=tlai_old(p), pft_type=patch%itype(p), &
o3uptake=o3uptakesun(p), o3coefv=o3coefvsun(p), o3coefg=o3coefgsun(p))

o3coefgsun(p) = o3coefgsun(c)^3._r8
tlai_old(p) = tlai(p)

end do

We’re in a loop over a patch (p) filter

This loop also sets the column (c)
index associated with each patch

Code duplication removed via repeated
call to a subroutine that does all the work

Line to be added

Edit OzoneMod.F90
o3coefgsun is a multiplier of stomatal conductance. It varies from 0 to 1, with 1
meaning no effect and 0 shutting down stomatal conductance. The intent of this
change is to make ozone's effect on stomatal conductance much more extreme,
just for sunlit leaves. With this change, for example, an effect of 0.5 will get turned
into 0.5^3 = 0.125.

Take a moment to think about what impact you expect this change to have on
canopy transpiration when comparing a new case with this change to your control
case (which enabled ozone stress, but at its standard level rather than this more
extreme level). See the next slide for the answer.

Expected impact on canopy transpiration
We are making the effect of ozone on stomatal conductance more extreme, thus
decreasing conductance further than in the control run. A decrease in stomatal
conductance should lead to a decrease in canopy transpiration. So we expect to
see lower stomatal conductance in our experimental run compared with the
control run.

It’s always a good idea to go through a thought exercise like this before running
the code with modifications, so you are prepared to examine the results with a
critical eye. (When I haven’t already formed a hypothesis like this, I find it’s too
easy to just quickly look at the model output and convince myself that it’s working
correctly, when really it may not be.)

However, for a real project, the “eyeball sanity check” that we’ll do here should
NOT be your only means for verifying your changes. You should do additional,
careful checks by comparing the results with hand calculations for a few points in
one timestep, and/or adding unit tests, and/or other, similar methods.

Create a new case
(3) Create a new case
cd ~/practical3/clm5.0_ozone_mods/cime/scripts
./create_newcase --case ~/clm_tutorial_cases/ozone_expt --compset I2000Clm50SpGs
--res f45_g37 --run-unsupported --project UCGD0004

(4) Do the initial case setup
cd ~/clm_tutorial_cases/ozone_expt
./xmlchange JOB_QUEUE=R4231261 --subgroup case.run --force
./xmlchange JOB_WALLCLOCK_TIME=00:05:00
./case.setup

(5) Copy over your previous namelist settings
cp ~/clm_tutorial_cases/ozone_control/user_nl_clm user_nl_clm
cat user_nl_clm
./preview_namelists

Build the model
(6) Build the model:
qcmd -q R4231261 -- ./case.build

Did the build complete successfully? See the next slide for some discussion

If you had an account on cheyenne before
the tutorial, make sure the PBS_ACCOUNT
is set to UCGD0004 before you build.

Build failure
You should see output like this:

Building lnd with output to /glade/scratch/sacks/ozone_expt/bld/lnd.bldlog.190204-154438
/gpfs/u/home/sacks/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90(377): error #5078: Unrecognized
token '^' skipped

/gpfs/u/home/sacks/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90(377): error #5082: Syntax error,
found REAL_KIND_CON '3.' when expecting one of: .EQV. .NEQV. .XOR. .OR. .AND. .LT. < .LE. <= .EQ. == .NE. /=
.GT. > ...

/gpfs/u/home/sacks/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90(377): error #6385: The highest data
type rank permitted is INTEGER(KIND=8). [O3COEFGSUN]

/gpfs/u/home/sacks/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90(377): error #6385: The highest data
type rank permitted is INTEGER(KIND=8). [3.]

Component lnd build complete with 2 warnings
clm built in 121.780889 seconds
ERROR: BUILD FAIL: clm.buildlib failed, cat /glade/scratch/sacks/ozone_expt/bld/lnd.bldlog.190204-154438

Look at the first reported error. Do you see what the problem is? (The rest of the errors are misleading:
as often happens, the compiler has gotten confused from the first error.)

Sometimes the build error doesn’t get printed like this, and you’ll need to scroll through the lnd bldlog
to find the first error (/glade/scratch/sacks/ozone_expt/bld/lnd.bldlog.190204-154438 in this case).

Fix the build error and submit the run
(7) Open ~/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90 in an
editor and edit the line you added (line 377): Change ^ to **:
o3coefgsun(p) = o3coefgsun(c)**3._r8

Save and exit your editor

(8) Rebuild the model. (This should go quickly, because the build can pick up
where it left off.)
cd ~/clm_tutorial_cases/ozone_expt
qcmd -q R4231261 -- ./case.build

This time, you should see the following, indicating that the build completed
successfully:

MODEL BUILD HAS FINISHED SUCCESSFULLY

(9) Submit the run:
./case.submit

Check for successful completion
(10) When the job finishes, check whether it completed successfully:
tail CaseStatus

Due to the nature of this error, your results may vary, but I got a model crash:
2019-02-04 16:37:31: case.run error

ERROR: RUN FAIL: Command 'mpiexec_mpt -np 180 -p "%g:" omplace -tm

open64 /glade/scratch/sacks/ozone_expt/bld/cesm.exe >> cesm.log.$LID 2>&1 ' failed

See log file for details: /glade/scratch/sacks/ozone_expt/run/cesm.log.4233830.chadmin1.190204-163712

If yours ran to completion, you can see my results here:
/glade/scratch/sacks/ozone_expt_run_saved

As the above message indicates, you can check the cesm.log file for details.
However, I usually start by checking the lnd.log file, and sometimes some of the
other component log files: these component log files contain output from just the
master processor of each component, and are easier to read than the cesm.log
file, which contains output from all processors, sometimes interleaved.

(Continued on next slide.)

Look into failure
(11) Go into your run directory and look at log files
cd /glade/scratch/$USER/ozone_expt/run
ls -lrt
tail lnd.log....

Nothing seems amiss for me there (again, your results may vary). So let’s check
the full cesm.log. Open your cesm.log file in an editor or view it with less, then
search for the first occurrence of “ERROR”.

I see the following:

128: ENDRUN:
128: ERROR: BandDiagonal ERROR: dgbsv returned error code

along with a bunch of matrix elements, some of which are NaN (not a number).
The “128:” prefix is the processor ID that printed that message.

Hmmmm, this doesn’t really help pin down the problem....

Fill in this log file name with the actual
names of your log files.

Exercise 3.3:
Retry the last case in DEBUG mode

Overview
When a run crashes or gives garbage results and the cause isn’t obvious, it is often
a good idea to rebuild and rerun in DEBUG mode. This turns on additional error-
checking for issues such as division by zero and trying to access array elements
outside the bounds of the array.

In fact, it is important to do a short (e.g., 5-day) run in DEBUG mode whenever you
make code changes, before starting a long production run, even if it looks like
things are working right. This can help catch bugs that may otherwise go
unnoticed.

However, note that running in DEBUG mode is much more expensive, so you
shouldn’t run long simulations this way.

You can rebuild an existing case in DEBUG mode, but you first need to fully clean
the existing build. In many cases it’s just as easy to create a new case, and that’s
what we’ll do here.

Create a new case from
your modified code

(1) Create a new case
cd ~/practical3/clm5.0_ozone_mods/cime/scripts
./create_newcase --case ~/clm_tutorial_cases/ozone_expt_debug --compset
I2000Clm50SpGs --res f45_g37 --run-unsupported --project UCGD0004

(2) Do the initial case setup
cd ~/clm_tutorial_cases/ozone_expt_debug
./xmlchange JOB_QUEUE=R4231261 --subgroup case.run --force
./xmlchange JOB_WALLCLOCK_TIME=00:05:00
./case.setup

(3) Copy over your previous namelist settings
cp ~/clm_tutorial_cases/ozone_control/user_nl_clm user_nl_clm
cat user_nl_clm
./preview_namelists

Build the model
(4) Change a setting in env_build.xml:
./xmlchange DEBUG=TRUE

(5) Build the model:
qcmd -q R4231261 -- ./case.build

You should see the following, indicating that the build completed successfully:

MODEL BUILD HAS FINISHED SUCCESSFULLY

(6) Submit the run:
./case.submit

If you had an account on cheyenne before
the tutorial, make sure the PBS_ACCOUNT
is set to UCGD0004 before you build.

Look into failure
(7) When the job finishes, check whether it completed successfully:
tail CaseStatus

You should see something like this:
2019-02-05 16:18:21: case.run error
ERROR: RUN FAIL: Command 'mpiexec_mpt -np 180 -p "%g:" omplace -tm open64
/glade/scratch/sacks/ozone_expt_debug/bld/cesm.exe >> cesm.log.$LID 2>&1 ' failed
See log file for details: /glade/scratch/sacks/ozone_expt_debug/run/cesm.log.4240878.chadmin1.190205-161750

Open the referenced cesm.log file in an editor or view it with less. Then either
scroll to the bottom or search for the first instance of “severe”.

Spend a minute thinking about what you’re seeing, then go on to the next slide.

Look into failure
You should see something like this in your cesm.log file (actually, many instances of
this – one for each processor):

87:forrtl: severe (408): fort: (3): Subscript #1 of the array O3COEFGSUN has value 3683 which is less than the

lower bound of 5647

87:

87:Image PC Routine Line Source

87:cesm.exe 0000000004197046 Unknown Unknown Unknown

87:cesm.exe 0000000001A104FE ozonemod_mp_calco 377 OzoneMod.F90

87:cesm.exe 00000000011E9D33 canopyfluxesmod_m 1300 CanopyFluxesMod.F90

87:cesm.exe 0000000000884909 clm_driver_mp_clm 543 clm_driver.F90

87:cesm.exe 000000000084711A lnd_comp_mct_mp_l 456 lnd_comp_mct.F90

87:cesm.exe 0000000000461C2D component_mod_mp_ 728 component_mod.F90

87:cesm.exe 0000000000430944 cime_comp_mod_mp_ 2712 cime_comp_mod.F90

87:cesm.exe 00000000004495DC MAIN__ 125 cime_driver.F90

The first line tells you the problem, and the following lines give what is known as a
stack trace, showing where the error occurred (near the top), then where that
subroutine was called from, then where that subroutine was called from, and so on.
Unsurprisingly, the error occurred on the new line that you added.

Reopen ~/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90 and look
at line 377 to see if you can identify the problem, then move on to the next slide.

Hint
Hint: o3coefgsun is a patch-level array (just above the loop, you can see that it is
aliased to o3coefgsun_patch). How do you see this array being indexed in other
parts of this subroutine?

See the next slide for the answer.

Fix the bug
Answer: Since o3coefgsun is a patch-level array, it should be indexed by a patch-level
index (typically “p”), not a column-level index (typically “c”): column-level indices are
completely different from patch-level indices.

(8) Open ~/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90 in an editor
and edit the line you added (line 377): Change (c) to (p):
o3coefgsun(p) = o3coefgsun(p)**3._r8

Save and exit your editor

(8) Rebuild the model. (This should go quickly, because it just needs to rebuild the
changed file and anything that depends on it.)
cd ~/clm_tutorial_cases/ozone_expt_debug
qcmd -q R4231261 -- ./case.build

(9) Resubmit the run:
./case.submit

(10) When the job finishes, confirm that it completed successfully (check the CaseStatus
file)

Think about your non-DEBUG run
So, what do you think happened in your previous, non-DEBUG run?

See the next slide for the answer.

Think about your non-DEBUG run
When you try to access an array element outside the bounds of an array, if you
haven't turned on DEBUG-mode checks, you'll get whatever value happens to be in
memory in the location that would have contained that array element, if the array
had been big enough. In most cases, this means you'll get some garbage value from
some other, totally unrelated variable!

If you’re “lucky”, this will cause the model to crash. But in some cases, the model
will continue to run and will just give incorrect results. Sometimes this will be
obvious, but you can’t count on that. This is why it is important to test your code
changes in DEBUG mode.

Bonus Exercise 3.4 (if you have time):
Rebuild and rerun the non-DEBUG case,

compare with the control case

Overview
We will now return to the non-DEBUG experimental case – the one that died with
a cryptic error. We’d like to compare the output from this case with your original
control case as a sanity check that your code change is working approximately as
expected.

You shouldn’t use the DEBUG case for this comparison, because the code gives
different answers when run in DEBUG vs. non-DEBUG mode: compiler
optimizations in non-DEBUG mode can lead to roundoff-level differences in
floating point operations. Although these differences should start off very small,
they can grow over time due to the nonlinearity of the model.

Rebuild and resubmit the non-DEBUG case
(1) Rebuild the non-DEBUG case. Since this case was created from the same code
directory as the DEBUG case, the rebuild will pick up the changes you made to fix
the DEBUG case.
cd ~/clm_tutorial_cases/ozone_expt
qcmd -q R4231261 -- ./case.build

(2) Resubmit the run:
./case.submit

(3) When the job finishes, confirm that it completed successfully (check the
CaseStatus file)

Compare output with your control case
(4) Create a difference file: experiment minus control:
cd /glade/scratch/$USER/archive/ozone_expt/lnd/hist
module load nco
ncdiff ozone_expt.clm2.h0.0001-01-01-00000.nc
/glade/scratch/$USER/archive/ozone_control/lnd/hist/ozone_control.clm2.h0.0001-01-01-00000.nc diffs.nc

(5) View the differences:
module load ncview
ncview diffs.nc &

Click on the button labeled “3d vars” and select FCTR (canopy transpiration).

Change the range to be symmetrical about zero by clicking on the “Range” button above the color bar.
Change the minimum to -10 and the maximum to 10.

Change the color bar by clicking on the leftmost (“3gauss”) button above the color bar. Continue clicking
until you find a good color bar for a difference plot (e.g., “blu_red”).

Scroll through time by clicking on the button labeled “1-Jan-0001”.

You should mainly see negative values – i.e., lower transpiration in the experimental case, where we
made the ozone effect more extreme. This is what we expected. Does it make sense to you that there is
little difference in the middle and high latitudes of the Northern Hemisphere?

Bonus Exercise 3.5 (if you have time):
Adding a history field

i.e., including a new variable in the model output

Edit OzoneMod.F90
(1) Open ~/practical3/clm5.0_ozone_mods/src/biogeophys/OzoneMod.F90 in
an editor and add the following block of code in the subroutine InitHistory
(around line 217):

this%o3coefgsun_patch(begp:endp) = spval
call hist_addfld1d (fname='O3COEFGSUN', units='unitless', &

avgflag='A', long_name='ozone coefficient for conductance, sunlit leaves (0 - 1)', &
ptr_patch=this%o3coefgsun_patch)

Note that, unless you specify otherwise (with the “default” optional argument to
hist_addfld1d), your new history field will automatically appear on the h0 history files.

This is needed for history fields that remain uninitialized (NaN) for
some points; to be safe, we do this for all history fields. NaN values
cannot be output, so we instead ensure that any unused points are
set to spval (“special value”) for fields that are output to history files.
spval is a constant that signals to the history averager that that point
should be excluded from averaging.

ptr_patch is used for patch-level
variables, ptr_col for column-level, etc.

Produce time averages. This is by far the
most common. Other options are
instantaneous, maximum over time, etc.

The various strings here (fname, units and long_name) can
be whatever you want – they have no special meaning.

Rebuild, resubmit, and check output
(2) Rebuild the non-DEBUG case:
cd ~/clm_tutorial_cases/ozone_expt
qcmd -q R4231261 -- ./case.build

(3) Resubmit the run:
./case.submit

(4) Look for your new field in the output:
cd /glade/scratch/$USER/archive/ozone_expt/lnd/hist
module load ncview
ncview ozone_expt.clm2.h0.0001-01-01-00000.nc &

Click on the button labeled “3d vars” and select O3COEFGSUN. Scroll through times,
making sure it looks like it has valid data (between 0 and 1).

