mizuRoute

Martyn P. Clark, University of Saskatchewan at Canmore Naoki Mizukami, National Center for Atmospheric Research 5 February, 2019

Global Water Futures GWF

GWF.USASK.CA

Outline

Background ۲

- CTSM hydrology
- CTSM water and land management
- Recent progress
 - Network routing over the CONUS
 - Network routing for the planet
 - Lakes/reservoirs
- Next steps

CTSM hydrology

CTSM development

- Ecosystem vulnerability and impacts on carbon cycle and ecosystem services
- Sources of predictability from land processes
- Impacts of land use and land-use change on climate, carbon, water, and extremes
- Water and food security in context of climate change, climate variability, and extreme weather

Lateral fluxes of water

Water and land management

Ecosystem Demography / Multi-layer canopy

Outline

- Background
 - CTSM hydrology
 - CTSM water and land management
- Recent progress
 - Network routing over the CONUS
 - Network routing for the planet
 - Lakes/reservoirs
- Next steps

Digital river networks (NHD+)

SUMMA/mizuRoute simulations of mean annual runoff for the NHD++ network

- mizuRoute configured for the NHD++ network (~2.7M streams)
- Major overhaul of mizuRoute to navigate the NHD++ network and generate information on reach characteristics to support multiple routing models
- Implemented a topological numbering scheme (Pfafstetter coding system) to
 - Simplify filtering of the river network
 - Enable efficient network-based domain decomposition procedures
 - Enable hydrologic prediction across scales

<u>Problems</u>: Heterogeneous network; broken links <u>Advantages</u>: Widespread community use; efforts to improve the network

The Pfafstetter coding system

The Pfafstetter coding system (NHD+)

Pfafstetter applications

- Subsetting
- Parallelization
- Aggregation

Application 1: Subsetting

Global Water Futures

All basins starting with '96' are in the Colorado River basin

The San Juan River includes all reaches starting with '966'

Application 2: Parallelization

Pfafstetter numbering system helps classify stream segments into "mainstem" and "tributary" that can be processed independently

Parallel processing with OpenMP or/and MPI

Application 2: Parallelization

OpenMP Scaling

Unit hydrograph routing

Kinematic wave routing

Application 3: Aggregation

Global Water Futures

Can aggregate basins at a given Pfafstetter level, and route using the same underlying network

- Aggregation is basin-specific, so have greater resolution in specific areas (adaptive in time, e.g., as a storm passes through)
- Supports "computationally frugal" model instantiations (for ensemble forecasting, parameter estimation trials, etc.)

Application 3: Aggregation

Continental-domain routing

- Hydrologic Derivatives for Modeling and Applications (HDMA)
 - Digital river network developed by Kris Verdin for the catchment land model
 - Uses Pfafstetter coding system
 - Global dataset

Lakes/reservoirs

- Work underway to incorporate hydroLakes in mizuRoute
 - Intersecting HDMA stream segments with hydroLakes
 - Extracting mizuRoute lake attributes from hydroLakes
 - Initial simulations over the Great Lakes

UNIVERSITY OF SASKATCHEWAN

GWF.USASK.CA

Outline

- Background
 - CTSM hydrology
 - CTSM water and land management
- Recent progress
 - Network routing over the CONUS
 - Network routing for the planet
 - Lakes/reservoirs
- Next steps

Next steps

- mizuRoute development
 - Complete Pfafstetter parallelization with MPI
 - Finalize new continental-domain test cases
- NHD+ aggregations
 - Complete NHD+ aggregations over the CONUS
 - Evaluate/improve aggregated NHD+ simulations
 - Evaluate scaling issues
- hydroLakes
 - Complete stream/lake intersections
 - Initial testing of lake simulations in mizuRoute
- Coupling
 - Refactor of mizuRoute driver
 - Upgrade to ESMF "re-gridders"
 - Integrate CTSM energy balance with mizuRoute water balance

Martyn P. Clark

University of Saskatchewan at Canmore martyn.clark@usask.ca