Soil biogeochemistry in a changing world Will Wieder NSF

2019 CTSM Tutorial

soil biogeochemical models

soil biogeochemical models

Rate constant (τ)

Water function Temperature function Transfer coefficients (among pools & respiration) Stoichiometry

C:N

Parameter file

Rate constant (τ)

Water function Temperature function Transfer coefficients (among pools & respiration) Stoichiometry tau_l1, tau_s1, tau_s2, etc.

rf_l1s1_bgc, rf_s1s2_bgc

cn_l1_bgc, cn_s1_bgc, etc

Parameter file

Rate constant (τ) Water function Temperature function Transfer coefficients

minpsi_hr = -2 CLM5 & -10 CLM4.5 q10_hr = 1.5

Yizhao et al. 2015 Sci Reports

Global soil biogeochemical models

CMIP5 Models = 6x variation

CMIP5 Models RCP8.5

Todd-Brown et al. Biogeosciences 2014

Permafrost C in models

CLM4.5bgc & 5.0

Permafrost C "observations"

NCSCD from Hugelius et al. 2013

Permafrost soils CLM4.5bgc & 5.0

Coarse

Carbon rich Vertically complex

CENTURY-like soil biogeochemistry

Permafrost soils CLM4.5bgc

Turnover times

Koven et al. 2017 NCC

Turnover times

Koven et al. 2017 NCC

Permafrost soils CLM4.5bgc & 5.0

Stoichiometry Rate constant (k) Water function Temperature function Transfer coefficients (among pools & respiration)

O₂ function Advection Diffusion E-folding depth (depth dependence of turnover)

Permafrost soil C loss

22

Koven et al (2015) PNAS

Coupled C:N Biogeochemistry

"N limitation of Decomposition fluxes"

Yes, that's really a thing in CLM & other demand-based models

Coupled C:N Biogeochemistry

Coupled C:N Biogeochemistry

N Demand

N Available

allocated proportional to demand

CLM 5 & beyond

Subgrid hillslope hydrology

Tillage

NH₃ emissions

Levis et al 2014 GMD

N uptake & competition

CLM4.0cn [inorganic N] CLM4.5bgc [NH₄^{+,} NO₃⁻]

Known Issues:

- High N fertilization effects
 <u>Thomas et al (2013) GBC</u>
- Huge denitrification fluxes
 <u>Thomas et al. (2013) BG</u>
 <u>Houlton et al. (2015) NCC</u>
- No leaching (or DON losses) Nevison et al. (2016) JAMES

Soil Biogeochemistry in CLM 5+

Adding functionality & reality

Rapid soil C turnover in CLM4.0-cn

Absurd soil N behavior in CLM4.0-cn

Bonan et al. Global Change Biology 2013

Soil C improved w/ DAYCENT?

Soil C improved w/ DAYCENT?

