

The Theory of Coupling for Sea Ice Models

Andrew Roberts and Elizabeth Hunke

Los Alamos National Laboratory

CICE and Icepack Workshop and Tutorial

February 3-5, 2020

Introduction: An Analytic Form of a CICE Configuration

Introduction: An Analytic Form of a CICE Configuration

Introduction: Fundamental Couplings in a Nutshell

Atmospheric and Oceanic State			
Transfer	Coupling Important Considerations		
	Cl	Bare Ice, Snow, Melt Ponds, Aerosols	
Radiation	Shortwave	Atmospheric Shortwave Radiation Scheme	
Radiation	Longwaya	Emissivity	
	Longwave	Important ConsiderationsBare Ice, Snow, Melt Ponds, AerosolsAtmospheric Shortwave Radiation SchemeEmissivityAtmospheric Longwave Radiation SchemeGeostrophyInertial OscillationsLength Scale vs. $g(h)$ ResolutionForm Drag vs. Skin DragSea Water FreezingOcean StratificationFloodingEnthalpyMetamorphosis	
Heat and Momentum	Repotropia Mode	Geostrophy	
	Darotropic mode	Inertial Oscillations	
	Turbulance	Length Scale vs. $g(h)$ Resolution	
	Turbulence	Form Drag vs. Skin Drag	
		Sea Water Freezing	
	Sea Water	Ocean Stratification	
Mass		Flooding	
	Snow and Dain	Enthalpy	
		Metamorphosis	
	Salt and Freshwater	Sublimation and Evaporation	
		Drainage and Melt	

Sea Ice State

A sea ice model's state space is fundamental to coupling

 $m = \rho \int_{0}^{\infty} g(h) h \, dh$

g(h) is used to describe mass conservation in sea ice models:

$$\frac{dg}{dt} = \Psi + \Theta - g(\nabla \cdot \dot{\boldsymbol{x}})$$

 Ψ Dynamic Redistribution, Θ Thermodynamic Redistribution

Radiation Coupling

	Transfer	Coupling	Important Considerations
		Shortwaya	Bare Ice, Snow, Melt Ponds, Aerosols
	Padiation	Shortwave	Atmospheric Shortwave Radiation Scheme
	Radiation	T	Emissivity
		Longwave	Atmospheric Longwave Radiation Scheme
		Paratronia Mada	Geostrophy
	Heat and Momentum	barotropic mode	Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
			Sea Water Freezing
		Sea Water	Ocean Stratification
		Flooding	
	Mass	Cu and Dain	Enthalpy
		Show and Itam	Metamorphosis
		Salt and Englander	Sublimation and Evaporation
		San and Liesnwarel	Drainage and Melt

Radiation Coupling: The Bulk Equation

 $\epsilon \sigma T_{surf\uparrow}^4 + H + LW_{\downarrow} + (1 - \beta)(1 - \alpha)SW_{\downarrow} = k\left(\frac{\partial T}{\partial z}\right).$

Symbols and Constants with Rough Estimates

E	Bulk Emissivity (typically 97-99%)
σ	Boltzman Constant
T _{surf}	Surface Temperature
H	Surface Turbulent Fluxes
LW_{\downarrow}	Longwave Down
β	Shortwave penetration fraction (~0.3)
α	Bulk Albedo
SW↓	Shortwave Down
k_{i}	Thermal Conductivity of Ice (~2.03 W m ⁻¹ K ⁻¹
k _s	Thermal Conductivity of Ice (~0.31 W m ⁻¹ K ⁻¹
Т	Depth-Varying Temperature in Sea Ice
Z	Vertical Coordinate in a sea ice column

This is the most basic form of thermodynamic coupling.

Radiation: Shortwave: Surface Type

Figure 1.8: Antarctic albedos for bare sea ice and snow covered sea ice relative to World Meteorological Organisation (WMO) classifications indicated at the minimum thickness of each class (after *Brandt et al.* [1999]). Solid lines have been added by the author as suggested model parameterisations, with equations for each line indicated in the key.

Bulk Albedo From Roberts (2005).

CICE and Icepack Workshop and Tutorial

-> New Snow

From Perovich 1998

0.87

1.00

Delta Eddington (DE) Radiation Scheme in CICE

Radiation: Shortwave: Surface Type

Coupling in CICE

Radiation Calculations are performed separately for bare ice, snow and melt ponds for each thickness category $g_i(h)$

Radiation Coupling

	Transfer	Coupling	Important Considerations	
		Shortwaya	Bare Ice, Snow, Melt Ponds, Aerosols	
	Radiation		Atmospheric Shortwave Radiation Scheme	
	Radiation	T	Emissivity	
		Longwave	Atmospheric Longwave Radiation Scheme	
		Paratronia Mada	Geostrophy	
	Heat and Momentum	barotropic mode	Inertial Oscillations	
		Turbulence	Length Scale vs. $g(h)$ Resolution	
			Form Drag vs. Skin Drag	
			Sea Water Freezing	
		Sea Water	Ocean Stratification	
			Flooding	
	Mass	Snow and Dain	Enthalpy	
		Show and Rain Metamorphosis		
		Salt and Freehuster	Sublimation and Evaporation	
		San and Licshward	Drainage and Melt	

Radiation: Shortwave: Atmospheric Model

Radiation: Shortwave: Atmospheric Model

Radiation: Shortwave: Atmospheric Model

Radiation Coupling

	Transfer	Coupling	Important Considerations
		Shortwaya	Bare Ice, Snow, Melt Ponds, Aerosols
	Padiation	Shortwave	Atmospheric Shortwave Radiation Scheme
			Emissivity
		Atmospheric Longwave Radiation Sche	
		Paratropia Mada	Geostrophy
	Heat and Momentum	Darotropic Mode	Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
			Sea Water Freezing
		Sea Water	Ocean Stratification
			Flooding
	Mass	Cu and Dain	Enthalpy
		Show and Itam	Metamorphosis
		Solt and Excelored	Sublimation and Evaporation
		San and Liesingrei	Drainage and Melt

Radiation Coupling: The Bulk Equation $\epsilon \sigma T_{surf\uparrow}^4 + H + LW_{\downarrow} + (1 - \beta)(1 - \alpha)SW_{\downarrow} = k\left(\frac{\partial T}{\partial z}\right).$

Symbols and Constants with Rough Approximations

ϵ	Bulk Emissivity (typically 97-99%)
σ	Boltzman Constant
T _{surf}	Surface Temperature
Η	Surface Turbulent Fluxes
LW_{\downarrow}	Longwave Down
β	Shortwave penetration fraction (~0.3)
α	Bulk Albedo
SW_{\downarrow}	Shortwave Down
k_{i}	Thermal Conductivity of Ice (~2.03 W m ⁻¹ K ⁻¹)
k _s	Thermal Conductivity of Ice (~0.31 W m ⁻¹ K ⁻¹)
Т	Depth-Varying Temperature in Sea Ice
Z	Vertical Coordinate in a sea ice column

Spectral coupling is being implemented in some models

Heat and Momentum Coupling

	Transfer	Coupling	Important Considerations
		Shortwaya	Bare Ice, Snow, Melt Ponds, Aerosols
	Radiation	Shortwave	Atmospheric Shortwave Radiation Scheme
	Radiation	Τ	Emissivity
		Longwave	Atmospheric Longwave Radiation Scheme
		Barotropia Modo	Geostrophy
	Heat and Momentum	Darotropic mode	Inertial Oscillations
	rieat and Womentum	Turbulance	Length Scale vs. $g(h)$ Resolution
		Turbulence	Form Drag vs. Skin Drag
			Sea Water Freezing
		Sea Water	Ocean Stratification
			Flooding
	Mass	Cu and Dain	Enthalpy
		Show and Itam	Metamorphosis
		Salt and Engelserator	Sublimation and Evaporation
		San and rieshwater	Drainage and Melt

$$m\frac{\partial \widetilde{u}}{\partial t} = \widetilde{\tau}_w + \widetilde{\tau}_a - mf\mathbf{k} \times \widetilde{u} - mg\nabla\eta - m\left(\widetilde{u}\cdot\nabla\right)\widetilde{u} + \frac{\partial\sigma_{mn}}{\partial x_n}$$

Notation

$\operatorname{constant}$			
k	unit normal vector upward from the sea surface		
g	acceleration due to gravity	9.80	ms^{-2}

variables

t	time	
m	ice mass per unit area including freeboard snow	
$\widetilde{u}=(u,v)$	horizontal ice velocity	
$\widetilde{ au}_w$	surface stress at the ocean-ice interface	
$\widetilde{ au}_a$	surface stress at the ice-atmosphere interface	
f	Coriolis parameter	
η	sea surface height	
σ_{mn}	internal two dimensional stress tensor	m,n=1,2
x_n	two dimensional axes for internal stress	

$$m\frac{\partial \widetilde{u}}{\partial t} = \widetilde{\tau}_w + \widetilde{\tau}_a - mf\mathbf{k} \times \widetilde{u} - mg\nabla\eta - m\left(\widetilde{u}\cdot\nabla\right)\widetilde{u} + \frac{\partial\sigma_{mn}}{\partial x_n}$$

Standard Geostrophic Signal in the Ocean

With Tides Added

Barotropic Sea Ice Model: Hibler et al 2006

Nansen [1902] found Arctic ice drifted at approximately 2% of and 30° to the right of the surface wind.

Considerable areas of Antarctic sea ice are close to free drift: (a) Antarctic buoy tracks in ice with concentration exceeding 30% at the start and end of each trace. Circles indicate final position. (b) NCEPR2 10m wind velocity $(m s^{-1})$ averaged from 6hourly fields over the buoy deployment years 1995 through 1998 represented in (a).

Nansen, F., 1902: The oceanography of the north polar basin. Vol. 3, 427 pp..

$$\begin{split} m \frac{\partial \widetilde{u}}{\partial t} &= \widetilde{\tau}_w + \widetilde{\tau}_a - mf \mathbf{k} \times \widetilde{u} - mg \nabla \eta - m\left(\widetilde{u} \cdot \nabla\right) \widetilde{u} + \frac{\partial \sigma_{mn}}{\partial x_n} \\ & \widetilde{\tau}_a = \rho_a C_{D_{10}} \left| \widetilde{u}_{10} \right| \widetilde{u}_{10} \end{split}$$

$$\widetilde{\tau}_w = \rho_w C_{W_g} \left| \widetilde{u}_{w_g} - \widetilde{u} \right| \left[\left(\widetilde{u}_{w_g} - \widetilde{u} \right) \cos \varphi + \mathbf{k} \times \left(\widetilde{u}_{w_g} - \widetilde{u} \right) \sin \varphi \right]$$

T		
- IN I	0t0t10	n
1.1	01.21.10	
1	000010	

constants		estimate	
$ ho_a$	air density	1.2	${ m kg}~{ m m}^{-3}$
$ ho_w$	sea water density	1025	${ m kg}~{ m m}^{-3}$
arphi	Ekman turning angle	-25	degrees
$C_{DN_{10}}$	neutral 10m wind drag coefficient	0.00175	
C_{W_g}	geostrophic current drag coefficient	0.0034	

variables

\widetilde{u}_{10}	wind velocity 10m above the surface
$C_{D_{10}}$	stability dependent 10m wind drag coefficient
\widetilde{u}_{w_g}	geostrophic ocean current

Brunke, M. A., M. Zhou, X. Zeng, and E. L. Andreas, 2006: An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment. *J. Geophys. Res.*, **111**, C09001, doi:10.1029/2005JC002907.

$$\begin{split} m \frac{\partial \widetilde{u}}{\partial t} &= \widetilde{\tau}_w + \widetilde{\tau}_a - m f \mathbf{k} \times \widetilde{u} - m g \nabla \eta - m \left(\widetilde{u} \cdot \nabla \right) \widetilde{u} + \frac{\partial \sigma_{mn}}{\partial x_n} \\ & \widetilde{\tau}_a = \rho_a C_{D_{10}} \left| \widetilde{u}_{10} \right| \widetilde{u}_{10} \end{split}$$

$$\widetilde{\tau}_{w} = \rho_{w} C_{W_{g}} \left| \widetilde{u}_{w_{g}} - \widetilde{u} \right| \left[\left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \cos \varphi + \mathbf{k} \times \left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \sin \varphi \right]$$

Notation

$\operatorname{constants}$		estimate	
ρ_a	air density	1.2	${ m kg}~{ m m}^{-3}$
$ ho_w$	sea water density	1025	${ m kg}~{ m m}^{-3}$
arphi	Ekman turning angle	-25	degrees
$C_{DN_{10}}$	neutral 10m wind drag coefficient	0.00175	
C_{W_g}	geostrophic current drag coefficient	0.0034	
variables			
\widetilde{u}_{10}	wind velocity 10m above the surface		
$C_{D_{10}}$	stability dependent 10m wind drag coefficient		
\widetilde{u}_{w_g}	geostrophic ocean current		

Why does the ice-ocean stress have a turning angle here, but not the ice-atmosphere stress?

ocean magnitudes scaled to atmospheric values atmospheric heights scaled to oceanic values

Mellor, G. L., 1996: Introduction to Physical Oceanography. American Institutde of Physics Press, 260 pp.

$$\begin{split} m \frac{\partial \widetilde{u}}{\partial t} &= \widetilde{\tau}_w + \widetilde{\tau}_a - m f \mathbf{k} \times \widetilde{u} - m g \nabla \eta - m \left(\widetilde{u} \cdot \nabla \right) \widetilde{u} + \frac{\partial \sigma_{mn}}{\partial x_n} \\ & \widetilde{\tau}_a = \rho_a C_{D_{10}} \left| \widetilde{u}_{10} \right| \widetilde{u}_{10} \end{split}$$

$$\widetilde{\tau}_{w} = \rho_{w} C_{W_{g}} \left| \widetilde{u}_{w_{g}} - \widetilde{u} \right| \left[\left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \cos \varphi + \mathbf{k} \times \left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \sin \varphi \right]$$

Notation

$\operatorname{constants}$		estimate	
ρ_a	air density	1.2	${ m kg}~{ m m}^{-3}$
$ ho_w$	sea water density	1025	${ m kg}~{ m m}^{-3}$
arphi	Ekman turning angle	-25	degrees
$C_{DN_{10}}$	neutral 10m wind drag coefficient	0.00175	
C_{W_g}	geostrophic current drag coefficient	0.0034	
variables			
\widetilde{u}_{10}	wind velocity 10m above the surface		
$C_{D_{10}}$	stability dependent 10m wind drag coefficient		
\widetilde{u}_{w_g}	geostrophic ocean current		

Why is the wind-ice speed difference not included above? Does it matter?

Let's answer the previous question by asking another one.

$$\frac{\partial \tilde{M}}{\partial t} = \frac{\widetilde{\tau}_a}{\rho_{iw}} - f \mathbf{k} \times \tilde{M}$$

Notation

 $\widetilde{M} = (M_x, M_y)$ ice-ocean mass transport relative to the geostrophic current ρ_{iw} density of the ice-water boundary layer

What does this equation represent?

Momentum Coupling: Relationship to Geostrophy
$$m\frac{\partial \widetilde{u}}{\partial t} = \widetilde{\tau}_w + \widetilde{\tau}_a - mf\mathbf{k} \times \widetilde{u} - mg\nabla\eta - m\left(\widetilde{u}\cdot\nabla\right)\widetilde{u} + \frac{\partial\sigma_{mn}}{\partial x_n}$$

This is the mass-transport version of the free drift equation

$$\frac{\partial \tilde{M}}{\partial t} = \frac{\tilde{\tau}_a}{\rho_{iw}} - f\mathbf{k} \times \tilde{M}$$

Notation

 $\widetilde{M} = (M_x, M_y)$ ice-ocean mass transport relative to the geostrophic current ρ_{iw} density of the ice-water boundary layer

Heil, P., and W. D. Hibler, III, 2002: Modeling the high-frequency component of Arctic sea ice drift and deformation. *J. Phys. Oceanogr.*, **32**, 11, 3039-3057.

$$\begin{array}{l} \text{Momentum Coupling: Relationship to Geostrophy} \\ \hline m \frac{\partial \widetilde{u}}{\partial t} = \widetilde{\tau}_w + \widetilde{\tau}_a - mf\mathbf{k} \times \widetilde{u} \\ - mg\nabla\eta - m\left(\widetilde{u} \cdot \nabla\right)\widetilde{u} + \frac{\partial\sigma_{mn}}{\partial x_n} \end{array}$$

A consequence of this is that $\nabla \times \tilde{\tau}_w$ should be conserved

$$\frac{\partial \tilde{M}}{\partial t} = \frac{\tilde{\tau}_a}{\rho_{iw}} - f \mathbf{k} \times \tilde{M}$$

Few models conserve $\nabla \times \tilde{\tau}_w$ in coupling

Notation

 $\widetilde{M} = (M_x, M_y)$ ice-ocean mass transport relative to the geostrophic current ρ_{iw} density of the ice-water boundary layer

Heil, P., and W. D. Hibler, III, 2002: Modeling the high-frequency component of Arctic sea ice drift and deformation. *J. Phys. Oceanogr.*, **32**, 11, 3039-3057.

$$\frac{\partial \tilde{M}}{\partial t} = \frac{\tilde{\tau}_a}{\rho_{iw}} - f \mathbf{k} \times \tilde{M}$$

Can be solved as:
$$\ {\partial^2 M_y\over\partial t^2} + f^2 M_y = -f{ au_x\over
ho_{iw}}, \ au_y = 0$$

- Forced harmonic oscillator
- •Oscillates with a period of 11.96 hours at the pole
- •Linear Time Invariant (LTI) system

Notation

 $\widetilde{M} = (M_x, M_y)$ ice-ocean mass transport relative to the geostrophic current ρ_{iw} density of the ice-water boundary layer

Heat and Momentum Coupling

	Transfer	Coupling	Important Considerations
	Radiation	Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
			Atmospheric Shortwave Radiation Scheme
		Longwave	Emissivity
			Atmospheric Longwave Radiation Scheme
	Heat and Momentum	Barotropic Mode	Geostrophy
			Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
	Mass	Sea Water	Sea Water Freezing
			Ocean Stratification
			Flooding
		Snow and Rain	Enthalpy
			Metamorphosis
		Salt and Freshwater	Sublimation and Evaporation
			Drainage and Melt

Fig. 6. Trajectory patterns. Panels (A) and (B) are subsections of buoy trajectories from day 301.25 to 310.25 in 2002. Coding of buoys matches previous figures. The start (diamond) and end (x') of each segment also marked. Panels (C) and (D) are trajectories during notable translations from day 293.75 to 295.83 and from 355.55 to 359.60 occurring just before and after Event 2, respectively, and also near the end of each buoy lifetime when ice is both retreating southward and melling rapidly. Distances correspond with Fig. 1.

Geiger, C. A., and D. K. Perovich, 2008: Springtime Ice Motion in the Western Antarctic Peninsula Region (U.S. GLOBEC contribution number 515). *Deep-Sea Research II*, **55**, 3-4, 338-350.

$$\begin{split} m \frac{\partial \widetilde{u}}{\partial t} &= \widetilde{\tau}_w + \widetilde{\tau}_a - m f \mathbf{k} \times \widetilde{u} - m g \nabla \eta - m \left(\widetilde{u} \cdot \nabla \right) \widetilde{u} + \frac{\partial \sigma_{mn}}{\partial x_n} \\ \widetilde{\tau}_a &= \rho_a C_{D_{10}} \left| \widetilde{u}_{10} \right| \widetilde{u}_{10} \end{split}$$

$$\widetilde{\tau}_{w} = \rho_{w} C_{W_{g}} \left| \widetilde{u}_{w_{g}} - \widetilde{u} \right| \left[\left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \cos \varphi + \mathbf{k} \times \left(\widetilde{u}_{w_{g}} - \widetilde{u} \right) \sin \varphi \right]$$

Notation

$\operatorname{constants}$		estimate	
ρ_a	air density	1.2	${ m kg}~{ m m}^{-3}$
$ ho_w$	sea water density	1025	${ m kg}~{ m m}^{-3}$
arphi	Ekman turning angle	-25	degrees
$C_{DN_{10}}$	neutral 10m wind drag coefficient	0.00175	
C_{W_g}	geostrophic current drag coefficient	0.0034	
variables			
\widetilde{u}_{10}	wind velocity 10m above the surface		
$C_{D_{10}}$	stability dependent 10m wind drag coefficient		
\widetilde{u}_{w_g}	geostrophic ocean current		

Why is the wind-ice speed difference not included above? Does it matter? YES

Roberts et al. 2015

Result from more frequent ice-ocean coupling in CESM: 30 minutes instead of 1 day

Does it matter?

20.38 × 10 ⁶ km ²	18.19 × 10 ⁶ km ²	18.83 × 10 ⁶ km ²
Difference:	2.19 × 10 ⁶ km ²	

Does it matter? YES

Heat and Momentum Coupling

	Transfer	Coupling	Important Considerations
	Radiation	Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
			Atmospheric Shortwave Radiation Scheme
		Longwave	Emissivity
			Atmospheric Longwave Radiation Scheme
	Heat and Momentum	Barotropic Mode	Geostrophy
			Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
	Mass	Sea Water	Sea Water Freezing
			Ocean Stratification
			Flooding
		Snow and Rain	Enthalpy
			Metamorphosis
		Salt and Freshwater	Sublimation and Evaporation
			Drainage and Melt

Heat and Momentum Coupling: Turbulence

$$\tilde{\tau}_{a} = \rho_{a}C_{d}\max\left(u_{min}, |\tilde{u}_{a} - \tilde{u}_{i}|\right)\left(\tilde{u}_{a} - \tilde{u}_{i}\right)$$
$$F_{s} = \rho_{a}C_{s}\max\left(u_{min}, |\tilde{u}_{a} - \tilde{u}_{i}|\right)\left(\theta_{a} - T_{s}\right)$$
$$F_{l} = \rho_{a}C_{l}\max\left(u_{min}, |\tilde{u}_{a} - \tilde{u}_{i}|\right)\left(Q_{a} - Q_{s}\right)$$

where the drag coefficient C_d , and transfer coefficients C_s and C_l are dependent upon max $(u_{crit}, |\tilde{u}_a - \tilde{u}_i|)$ for wind velocity \tilde{u}_a and air density ρ_a at a reference level 10 m above the surface. θ_a and Q_a are the corresponding potential air temperature and specific humidity, given the respective surface temperature T_s and specific humidity Q_s .

Heat and Momentum Coupling: Turbulence: L vs. g(h)

Heat and Momentum Coupling: Turbulence: L vs. g(h)

Heat and Momentum Coupling: Turbulence: L vs. g(h)

Surface temperature evolution is inherently noisy, but fluxes in thin thicknesses in g(h) serve to modulate rapid variations over thick sea ice.

Results shown here are from a sea ice forecast model for the Southern Ocean.

Heat and Momentum Coupling

	Transfer	Coupling	Important Considerations
	Radiation	Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
			Atmospheric Shortwave Radiation Scheme
		Longwave	Emissivity
			Atmospheric Longwave Radiation Scheme
		Barotropic Mode	Geostrophy
	Heat and Momentum		Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
	Mass	Sea Water	Sea Water Freezing
			Ocean Stratification
			Flooding
		Snow and Rain	Enthalpy
			Metamorphosis
		Salt and Freshwater	Sublimation and Evaporation
			Drainage and Melt

Heat and Momentum Coupling: Form Drag

FIG. 9. Climatological (1990–2012) September ice concentration from (a) HadISST measurements, (b) the SKIN run, (c) the FORM run, and (d) ice concentration difference between the FORM and SKIN runs. Same climatologies for ice thickness from (e) PIOMAS, (f) the SKIN run, (g) the FORM run, and (h) ice thickness difference between the FORM and SKIN runs. Also shown climatologies for the ice drift from (i) Pathfinder, (j) the SKIN run, (k) the FORM run, and (l) ice drift difference between the FORM and SKIN runs. Note that regions where the values exceed the range in the color bar are shown in white.

Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell, S. L., Kurtz, N., et al. (2014). Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice. *Journal of Physical Oceanography*, *44*, 1329– 1353. https://doi.org/10.1175/JPO-D-13-0215.1

Transfer	Coupling	Important Considerations
	Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
Radiation		Atmospheric Shortwave Radiation Scheme
	Longerson	Emissivity
	Longwave	Atmospheric Longwave Radiation Scheme
	Paratropia Mada	Geostrophy
Heat and Momentum	Barotropic Mode	Inertial Oscillations
Heat and Momentum	Turbulence	Length Scale vs. $g(h)$ Resolution
		Form Drag vs. Skin Drag
	Sea Water Freezing Ocean Stratification Flooding	Sea Water Freezing
		Ocean Stratification
		Flooding
Mass	Snow and Bain	Enthalpy
	Show and Ram	Metamorphosis
	Salt and Freshwater	Sublimation and Evaporation
		Drainage and Melt

Mass Coupling: Sea Water: Freezing

Temperature of density maximum and freezing temperature of sea ice water from Ono (1965)

This area of the Arctic can have salinities below 24.7 psu due to river outflow. Hence sea ice here may have some characteristics of lake ice and will typically form early during the onset of winter relative to other areas of the Arctic.

Couple Using the Liquidus Temperature

	Transfer	Coupling	Important Considerations
		Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
	Padiation		Atmospheric Shortwave Radiation Scheme
	Radiation	Longwave	Emissivity
			Atmospheric Longwave Radiation Scheme
		Barotropic Mode	Geostrophy
	Heat and Momentum		Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
	Mass →	Sea Water	Sea Water Freezing
			Ocean Stratification
			Flooding
		Snow and Rain	Enthalpy
			Metamorphosis
		Salt and Freshwater	Sublimation and Evaporation
			Drainage and Melt

	Transfer	Coupling	Important Considerations
		Shortwave	Bare Ice, Snow, Melt Ponds, Aerosols
	Radiation		Atmospheric Shortwave Radiation Scheme
	Radiation	Longwave	Emissivity
			Atmospheric Longwave Radiation Scheme
		Barotropic Mode	Geostrophy
	Heat and Momentum		Inertial Oscillations
		Turbulence	Length Scale vs. $g(h)$ Resolution
			Form Drag vs. Skin Drag
-	► Mass ►	Sea Water	Sea Water Freezing
			Ocean Stratification
			Flooding
		Snow and Rain	Enthalpy
			Metamorphosis
		Salt and Freshwater	Sublimation and Evaporation
			Drainage and Melt

Conclusion: Limitations of Mass Coupling

- Enthalpy-carrying precipitation and runoff
- Permafrost-sea ice coupling
- Rain and melt-pond water drainage
- Snow metamorphosis

Note that in this talk, I have not discussed wave-ice coupling or biogeochemical coupling, both areas of continued development.

