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CICE

* Recent release: CICE v6.1.0 and Icepack v1.2.0 Consortlum

CICE documentation » 2. Science Guide »

Previous topic 2.2. Fundamental Variables

2.1. Coupling With Other
Climate Model Components The Arctic and Antarctic sea ice packs are mixtures of open water, thin first-year ice, thicker multiyear ic

thick pressure ridges. The thermodynamic and dynamic properties of the ice pack depend on how much i
in each thickness range. Thus the basic problem in sea ice modeling is to describe the evolution of the ice
ness distribution (ITD) in time and space.

Next topic

2.3. Tracers

This Page
In addition to an ice thickness distribution, CICE includes an optional capability folg floe size distribution.

Show Source



* Interactions between waves and sea ice occur via the floe size
distribution

* Modelling work has advanced our understanding of the
evolution of the floe size distribution

* \We still need observations for overall model validation — in
progress

* There are number of ways that wave-ice interactions may
influence the polar climate system



Motivations
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Figure: Surface temperature anomalies (in °C)
for Jan-Mar (2016) with respect to a 1961-1990
baseline. [ Credit: NASA — GISTEMP
(accessed 2016-10-15) and Hansen et al.,
20101
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The New Arctic

Seaiceis
» Less extensive

* Thinner
* Younger
 Darker

* More seasonal

Are models

suitable for the
‘new Arctic’?




Sea ice extent (10° km?)

CMIP5

‘Faster than forecast’

(a) Arctic sea ice extent in September (1900-2012)
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Are models missing feedbacks

relevant for sea ice?




CMIP6
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Blanchard-Wrigglesworth &
Bushuk (2019) Clim Dyn

. . New figure here courtesy Ed. BW
Sea ice persistence

CMIP6 Arctic SIA persistence 1975-2014 (detrended)
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Are models suitable for the
‘new Arctic’?

Are sea ice models missing
short timescale physics?

Are models missing feedbacks
relevant for sea ice?




Ocean surface waves and sea ice



Enhanced wave activity in the Arctic
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Waves break up sea ice and influence sea ice growth

Pancakes

Thick multi-year ice
350 km from ice edge

Nilas

Prinsenberg & Peterson (2011) Ann. Glaciol.




Floe size distribution (FSD
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Representative radius Perimeter per unit ice area
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* Need to represent FSD to

* (a) describe impact of waves on ice

 (b) describe impact of ice on waves

* Coupled climate models
« don't typically contain wave models
 if they do, they stop at the ice edge
» don’t represent changes in floe size

 CICES5: all floes are 300 m in diameter




New modelling capability



Ice thickness distribution
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Joint floe size and thickness distribution
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Horvat & Tziperman (2015) The Cryosphere
Roach, Horvat et al (2018) JGR: Oceans

The FSD emerges due to the interaction of physical processes

@ « New ice formation

o Lateral melt

» Lateral growth

@@ — C/D * Floe welding
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Roach, Smith & Dean (2018) JGR: Oceans
Roach, Bitz et al. (2019) JAMES

In-situ observations of floe growth processes
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the wave field (Shen et al. 2001)



Horvat & Tziperman (2015) The Cryosphere
Roach, Horvat et al (2018) JGR: Oceans

\Wave-ice interactions Roach, Bitz et al. (2019) JAMES

Input: 1D ocean surface j> “

wave spectrum, E(f)

2. Use E(f) to generate realizations of the sea surface
height field — strain between extrema in SSH —

* e.g. coupling with Wavewatch llI; empirical generate fractures i.e. a super-parametrization
expression for wave attenuation as a function of

ice thickness, concentration and floe size

(Meylan et al. 2020, in prep) @ T .

-
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1. Compute wavelength and A H F ‘hd
amplitude for tensile stress — size
of newly formed floes
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Horvat & Roach (2020, in prep)

Machine-learning-aided parametrization of wave fracture
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* The output data is also reasonably well-
captured by a deep network

« Hopefully coming soon to CICE code
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Roach, Bitz et al. (2019) JAMES

Wave-sea ice coupled results

CICE5-WW3
coupled, JRAS5
reanalysis, slab
ocean, nominal 1

degree, 2000-2014
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Roach, Bitz et al. (2019) JAMES

Seasonal cycle in floe size statistics
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Roach, Bitz et al. (2019) JAMES
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Observations



(3) Plot the FSD

Floe size observations are sparse

(1) Acquire image
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(2) Pick out floes
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But there is cause for
optimism!
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ICE, CLOUD, AND LAND ELEVATION SATELLITE-2

Figure produced by Marco Bagnardi c/o
the ICESat-2 Project Science Office
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Horvat, Roach et al. (2019) The Cryosphere

Inferring floe sizes from altimetry

« |dentify a continuous segment of ice points

Freeboard

» Define the “spacing distribution” in an area by
accumulating floe chords over repeat passes.

» Chord lengths are not floe sizes! 1020 1025 1030
Distance (km)
« Use Bayes’ theorem to infer the most likely
distribution of floe sizes that would lead to the K Spacing Distribution
observed chord distribution. = 102 -
« Can use this to find out: O 10”‘; | | | | | | | | | .| {,\_:J
1 km 10 km
* When the FSD/CLD have the same scaling properties. Spacing (m)

« The relationship between moments of the CLD and
FSD.



Few observations of waves in sea ice

a) Number of observations () d) In-ice Hs (m)
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Stopa et al. (2018) PNAS



model . insight from . model
development observations development

’ 4

insight from . model » more
observations development observations?




Impacts and opportunities



Forecasting waves and the fragmentation of sea ice for
stakeholders

Process-level: understanding how different processes
drive the floe size distribution, how do waves interact with
sea ice?

Short-timescale: how does sea ice respond to storms?

Long-timescale: how does sea ice respond to a changing
climate?
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JRAS5 Atmospheric Reanalysis [ Atmosphere

[ Seaice ]«9

Helen Kershaw & Baylor Fox-
Kemper, Brown University

JRAS5 Atmospheric Reanalysis
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Total lateral melt (m/day)

Lateral melt
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« Large changes in lateral melt with changes in FSD and wave

physics, reduction in basal melt
* Need to investigate in fully-coupled system
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Heat transfer through fragmented sea ice

m o * In current climate models, ocean-atmosphere heat
' fluxes are computed by aggregating the ice-
covered and non-ice-covered portions of a grid cell

100fo¢°

* Observations show that turbulent heat transfer is
much more efficient for smaller leads (Marcq &
Weiss, 2012)

* |Infer lead widths from FSD

* How will sea ice moderate ocean-atmosphere heat
fluxes in a changing climate?
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Figure: Rothrock & Thorndike (1984)



WRS / Wind Stress on sea ice [-]
c) 150°W 130°W

Sea ice dynamics

 \Wave radiation stress on sea ice increases sea ice »70°N

drift velocity (Boutin et al., 2019)
180°N

* Fragmentation results in decrease in internal ice
stress (Boutin et al. 2020, in review)

Form drag, eddy generation at
floe edges, wave-induced
mixing ....

30°F ' 50°F

Figure: Boutin et al. (2019) The Cryosphere



... a number of sea ice-climate interactions that may become
more important in the new Arctic



Summary

» Discussed reasons to reconsider the physics in sea ice models

» Developed a new model for sea ice floe sizes compatible with existing
climate models and allowing sea ice-wave coupling — now in
CICEG6/Icepack

« Worked on integrating observations with modelling of different physical
processes

« Gained initial insights on what drives evolution of the floe size distribution
and what impact it may have on polar climate

* | ots more future work!



