Earth System Prediction with CESM

Elizabeth Maroon Oceanography Section, CGD August 6, 2019

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

What is Earth System Prediction?

Earth System: the integrated system of physical, chemical, and biological processes in the atmosphere, ocean, land, biosphere, cryosphere, ...

Prediction: a declaration or indication in advance, especially on the basis of observations, experience, or scientific reasoning (*Merriam-Webster*)

A first prediction: climatology with stationary conditions

A first prediction: climatology with stationary conditions

A better prediction using initial conditions

Adding in external forcing

Adding in external forcing

A prediction using both initial conditions and external forcing

Relative importance of initial conditions versus external forcing depends on timescale

Predictions

Projections

From Meehl et al. (2009)

How to make a prediction?

Statistical Models:

Regressions, linear trends, etc. Linear Inverse Models Analog Methods Machine Learning Physical models: Weather models (WRF, MPAS, GFS...) Hydrologic models Climate/Earth System models (like CESM)

Components of the Earth System contribute to predictability at different timescales

from research.noaa.gov

Seasonal Prediction with CESM

- NCAR's CESM1 is participating in the North American Multi-Model Ensemble (seasonal prediction)
- NCAR's CESM1 is showing really good skill in US precipitation forecast

Michael Ventrice @MJVentrice · 22h

New kid on the block model (NCAR CESM; recently added into the NMME suite) absolutely nailed the US Summer (JAS) forecast. Kudos to NCAR.

Contacts: Julie Caron & Joe Tribbia

Subseasonal to Seasonal (S2S) Prediction

- S2S hindcasts were carried out with the default and 46-level (higher top) CESM1:
- Weekly starts, every Wed between 1999 and 2015, 45-day long runs x10 ensembles
- CESM1 has better skill than most SubX (Subseasonal Experiment) models and increases the skill of the multi-model mean
- Similar hindcast set will be generated with CESM2

Contacts: Yaga Richter

Interannual to Decadal Prediction with CESM CESM Decadal Prediction Large Ensemble (DPLE)

CESM-DPLE described in Yeager et al. (2018) CESM-LE described in Kay et al. (2015)

Figure courtesy Lovenduski

Contacts: Stephen Yeager

Examples of CESM-DPLE Applications

Sahel precipitation

Yeager et al. (2018) Maroon et al. (in prep.)

Ocean acidity

Brady et al. (in prep.)

Lovenduski et al. (in prep.)

European precip

Simpson et al. (2019)

Phytoplankton

Krumhardt et al. (in prep.)

Ocean carbon uptake

Lovenduski et al. (2019)

Jet biases

Many open questions for research...

- Where/why do we expect and have prediction skill, and where/why is there *not* skill?
- How much predictability stems from external forcing versus initial conditions as a function of timescale?
- What are the sources of predictability for various predictors, and what are the timescales?
- What's the best method to initialize CESM for Earth System Prediction to minimize drift and initialization shock?
- How to best statistically find signals in initialized ensembles?

emaroon@ucar.edu

@lizthered

