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Learning goals R

- What is an Ensemble? What is a Large Ensemble?
- What can Large Ensembles be used for?

- Large Ensemble resources
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Ensemble:
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Ensemble: a group of items viewed as a whole rather than individually
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Ensemble: a group of items viewed as a whole rather than individually
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What is a Large Ensemble? NCAR
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What is a Large Ensemble?
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What is a Large Ensemble?
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble? Sy

Single Model Initial-Condition Large Ensemble (SMILE)
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Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)

Lorenz equations
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)

Lorenz equations
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What is a Large Ensemble?
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Single Model Initial-Condition Large Ensemble (SMILE)

Lorenz equations The Concept of Predictability
dx

dt =o(y—z), Temperature forecast for Boulder
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Temperature measured in Boulder

Courtesy Falko Judt
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?
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Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?
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Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What is a Large Ensemble?

Single Model Initial-Condition Large Ensemble (SMILE)
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What can Large Ensembles be used for?
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What can Large Ensembles be used for?

Interpret the
observational record
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What can Large Ensembles be used for? Q{
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What can Large Ensembles be used for?

.

observational record

Interpret the

ST Yk N

4 3 -2 15 -1 05 0 05 1 15 2 3 4

/
Assess forced response

\

and partition uncertainty

(a) North America temperature (annual)
100

80

40 ‘,,-“ [ Internal variability (mean)
[ I V\ode!
[l Uncertainty on int. var.
Assuming fixed int. var.

Fractional uncertainty (%)

H&S approach

Deser et al. (2019)
0
2000 2020 2040 2060 2080

Hawkins & Sutton (2009)

J

N

Study internal variability

_Summer _ Extratropical land

Winter
10 {a) M 20051 i(b) |

Land fraction (%)
Je
&
>

Tropical land DJF
10 Q) I ] -
51 ) { |
Pendergrass et al. (2017)
S i
100 0 100 200 -100 0 100 200

Change in standard deviation of precipitation (%)

)

32



What can Large Ensembles be used for?

.

observational record

Interpret the
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Large Ensemble resources

CESM1 Large Ensemble (CESM2 Large Ensemble with 100 ensemble members planned)

y

NCAR

34



Large Ensemble resources

CESM1 Large Ensemble (CESM2 Large Ensemble with 100 ensemble members planned)

Multi-Model Large Ensemble Archive
(MMLEA):

Set of variables from different
CMIP5-class LEs

CMORIized and made publicly
available (CDG and Cheyenne)

Includes Observational-LE for
temperature and precipitation

Goal of facilitating model comparison
and evaluation - accelerating
scientific discovery

|dea for it to grow with community
input (more variables, new LEs, new
Observational-LEs, etc.)

= 2 e Number
Modeling Model Model Resolution s Initialization Multi-Model
Center | Version |(atm/ocn) Method Large Ensemble
Members Archive
1950- |Macro and e 4
CCCma |CanESM2 |~2.8°x2.8°/~1.4°x0.9° 50 3 -
2100 |Micro y S
ve'd @
T ' e esce
. i 1850~
CSIRO MK3.6 ~1.9°%1.9°/~1.9°x1.0° Macro 30
2100 rcp85 (2013)
s . 1950~ historical, Rodgers et al.
GFDL ESM2M ~2.0°%2.5°/~1.0°%0.9° Macro 30
2100 rcp85s (2015)
h 1920~ i historical, Sun et al.
GFDL CM3 ~2.0°%2.5°/~1.0°%0.9° Micro 20
2100 rcp8s (2018)
historical,
MPIESM- |~1.9°x1.9°/nominal 1850~ Maher et al.
MPI ) Macro 100 rcp26, rcp4s,
LR 15° 2100 (2019)
rcp85
~1.3°x0.9°/nominal 1920~ historical, Kay et al.
NCAR CESMI X Micro 40
10° 2100 rcp85 (2015)
EC- ~11°x11°/nominal 1860~ historical, Hazeleger et
SMHI/KNMI ) Micro 16
EARTH  [10° 2100 rcp85 al. (2010)
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Large Ensemble resources

CESM1 Large Ensemble (CESM2 Large Ensemble with 100 ensemble members planned)

Multi-Model Large Ensemble Archive
(MMLEA):

Set of variables from different
CMIP5-class LEs

CMORIized and made publicly
available (CDG and Cheyenne)

Includes Observational-LE for
temperature and precipitation

Goal of facilitating model comparison
and evaluation - accelerating
scientific discovery

|dea for it to grow with community
input (more variables, new LEs, new
Observational-LEs, etc.)

SMILE email list:

: A S Number
Modeling Model Model Resolution s Initialization Multi-Model
Center Version |(atm/ocn) Method Large Ensemble
Members Archive
) 1950~ |Macro and -
CCCma |CanESM2 |~2.8°x2.8°/~1.4°%0.9° 50 3 -
2100 |Micro y i
vels b
T ' e esce
2 ) 1850~
CSIRO MK3.6 ~1.9°%1.9°/~1.9°x1.0° Macro 30
2100 rcp85 (2013)
8 _ 1950~ historical, Rodgers et al.
GFDL ESM2M  |~2.0°%x2.5°/~1.0°x0.9° Macro 30
2100 rcp85s (2015)
h 1920~ i historical, Sun et al.
GFDL CM3 ~2.0°%2.5°/~1.0°%0.9° Micro 20
2100 rcp8s (2018)
historical,
MPIESM- |~1.9°x1.9°/nominal 1850~ Maher et al.
MPI ) Macro 100 rcp26, rcp4s,
LR 15° 2100 (2019)
rcp85
~1.3°x0.9°/nominal 1920~ historical, Kay et al.
NCAR CESMI X Micro 40
10° 2100 rcp8s (2015)
EC- ~11°x11°/nominal 1860~ historical, Hazeleger et
SMHI/KNMI ) Micro 16
EARTH  [10° 2100 rcp85 al. (2010)
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Large Ensemble resources

)

CESM1 Large Ensemble (CESM2 Large Ensemble with 100 ensemble members planned)

Multi-Model Large Ensemble Archive
(MMLEA):

Set of variables from different
CMIP5-class LEs

CMORIized and made publicly
available (CDG and Cheyenne)

Includes Observational-LE for
temperature and precipitation

Goal of facilitating model comparison
and evaluation - accelerating
scientific discovery

|dea for it to grow with community
input (more variables, new LEs, new
Observational-LEs, etc.)

SMILE email list:

: A TS Number
Modeling Model Model Resolution Years Initialization Multi-Model
Center | Version |(atm/ocn) Method Large Ensemble
Members Archive
1950- |Macro and
CCCma |CanESM2 |~2.8°x2.8°/~1.4°x0.9° 50
2100 |Micro i
! ! =
ovoe
. i 1850~
CSIRO MK3.6 ~1.9°%1.9°/~1.9°x1.0° Macro 30
2100 rcp85 (2013)
8 _ 1950~ historical, Rodgers et al.
GFDL ESM2M ~2.0°%2.5°/~1.0°%0.9° Macro 30
2100 rcp85s (2015)
h 1920~ i historical, Sun et al.
GFDL CM3 ~2.0°%2.5°/~1.0°%0.9° Micro 20
2100 rcp8s (2018)
historical,
MPIESM- |~1.9°x1.9°/nominal 1850~ Maher et al.
MPI Macro 100 rcp26, rcp4s,
LR 15° 2100 (2019)
rcp85
~1.3°x0.9°/nominal 1920~ historical, Kay et al.
NCAR CESMI Micro 40
10° 2100 rcp85 (2015)
EC- ~11°x11°/nominal 1860~ historical, Hazeleger et
SMHI/KNMI Micro 16
EARTH  [10° 2100 rcp85 al. (2010)

Thanks!
flehner@ucar.edu
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What is a Large Ensemble? N

NCAR

Clim Dyn (2012) 38:527-546 THE COMMUNITY EARTH
DOI 10.1007/s00382-010-0977-x SYSTEM MODEL (CESM) LARGE
ENSEMBLE PROJECT

A Community Resource for Studying Climate Change
Uncertainty in climate change projections: the role of internal in the Presence of Internal Climate Variability
variability

8y . E. Kay, C. Deser, A. PriLups, A. Mai, C. Hannay, G. Std Cited by 674
G. DanasasoGLy, J. EDwarps, M. HouAn, P. KUSHNER, J.-F.
Clara Deser -+ Adam Phil]ips + Vincent Bourdette * Cited by 841 A. MippLeToN, E. Munoz, R. Neatg, K. OLeson, L. P(

Haiyan Teng

2014 2015 2016 2017 2018 2018

2011 2012 2013 2014 2015 2016 2017 2018 2019

nature

. PERSPECTIVE

Communication of the role of natural variability in
future North American climate

Clara Deser™, Reto Knutti?, Susan Solomon?® and Adam S. Phillips' | ciieq by 508

As climat dels impi , decisi kers' expectations for accurate climate|
variability, k poses inh limits to cli predictability and the related go|
illustrated here for North America. Other locations with low natural variability show
pogenic forcing can be more readily identified, even on small scales. We call for a mol
cymakers and the public to improve communication and avoid raising expectations fd 2011 2012 2013 2014 2015 2016 2017 2018 2019




Limitations of a single LE

CESM LE mean, D)

-

(c) LENS 4/ obs &

[ I | [
02 03 04 05 06 07 08 09
Temperature standard deviation (°C)

Model biases in decadal variability

“...indicating that the forced warming
signal emerges earlier in observations
than suggested by models.”

Lehner at al. (2017)

02 04 06 08 10 12 14 16 18

O LENS/G obs

Model biases in 50-year trends,
assessed using an observational LE

“...[it] is easier to detect the historical
climate change signal in observations
than in any given member of LENS.”

McKinnon at al. (2017)
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Beyond a single LE

US CLIVAR

Home Aboutv Sciencew USAMOC~ News & Publications» Calendar & Meetings

Large Ensemble Working Group

Creation of a Multi-Model Large
Ensemble Archive (MMLEA):

» Set of variables from different
CMIP5-class LEs

* CMORIized and made publicly
available (CDG and Cheyenne)

* Includes Observational-LE (see
Karen’s talk)

» Goal of facilitating model
comparison and evaluation -
accelerating scientific discovery

* Idea for it to grow with community
input (more variables, new LEs,
new Observational-Les, etc.)

.

US CLIVAR Working Group on Large Ensembles

“Foster exchange of ideas relevant to LEs across disciplines
(i.e., atmosphere, ocean, land, biogeochemistry)”

Number
Modeling Model  Model Resolution Initialization "
. rs f Forcing |Reference
Center Version |(atm/ocn) Method
Members
) ) |Kirchmeier-
1950~ |Macro and historical, |
CCCma |CanESM2 |~2.8°x2.8°/~1.4°%0.9° i 50 |Young et al.
2100 |Micro rcp8s
(2017)
1850~ historical, |Jeffrey et al.
CSIRO MK3.6 ~1.9°%1.9°/~1.9°x1.0° Macro 30
2100 rcp8s (2013)
1950~ historical, Rodgers et al.
GFDL ESM2M -2.0°x2_5°/-l.0°x0.9° Macro 30
2100 rcp8s (2015)
1920~ | . historical, {Sun et al.
GFDL CM3 ~2.0°%2.5°/~1.0°x0.9° Micro 20 |
2100 rcp8s (2018)
, historical,
MPI-ESM- |~1.9°x1.9°/nominal 1850~ Maher et al.
MPI Macro 100 rcp26, rcp4s,
LR 15° 2100 (2019)
‘ rcp8s
~1.3°x0.9°/nominal 1920~ | historical, |Kay et al.
NCAR CESMI Micro 40 |
1.0° 2100 rcp8s (2015)
EC- ~11°x11°/nominal 1860~ . historical, Hazeleger et
SMHI/KNMI Micro 16
EARTH  |10° 2100 rcp85s al.(2010)
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Application #1: Interpretation of observational record

Temperature trend annual 1951-2010
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Application #1: Interpretation of observational record

Temperature trend annual 1951-2010
(d)

Ensemble mean

Observations

Strongest trend

Weakest trend
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Deser at al. (submitted)



Application #1: Interpretation of observational record

Temperature trend annual 1951-2010
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Application #1: Interpretation of observational record

Temperature trend annual 1951-2010
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Application #2: Evaluation of model variability

Temperature trend annual 1951-2010

MPI EMrends
MP!I Gtrends

CESM1 EMtrends
CESM1 Otrends

Area with
Signal-to-Noise > 2
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Deser at al. (submitted)



Application #2: Evaluation of model variability

Temperature trend annual 1951-2010
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Application #2: Evaluation of model variability

Temperature trend annual 1951-2010
(b) _MPI

Noise (Otrends)

MPI Gtrends

OBS-LE Otrends
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MPI EMrends
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|—> OBS-LE: estimate of real-
world variability in trends

Deser at al. (submitted)
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Application #2: Evaluation of model variability

Temperature trend annual 1951-2010
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Application #2: Evaluation of model variability

Temperature trend annual 1951-2010
(b) MPI

Noise (Gtrends)

OBS-LE Gtrends
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Application #2: Evaluation of model variability NCEAR

Temperature trend annual 1951-2010

CSIRO-Mk3-6-
Ctrends

GFDL-CM3
Otrends
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Noise

Deser at al. (submitted)
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Application #3: Uncertainty partitioning E{

C Global, decadal mean surface air temperature
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52



Application #3: Uncertainty partitioning

(a) North America temperature (annual)
100

Repeat H&S09 analysis with 7 LEs
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Application #3: Uncertainty partitioning
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Other applications and documentation of MMLE Archive

Strength in Numbers: The Utility of Large Ensembles with Multiple Earth System Models

US CLIVAR Working Group on Large Ensembles
[C. Deser*, F. Lehner, K.B. Rodgers, T. Ault, T.L. Delworth, P.N. DiNezio, A. Fiore, C. Frankignoul,
J. C. Fyfe, D.E. Horton, J.E. Kay, R. Knutti, N.S. Lovenduski, J. Marotzke, K.A. McKinnon, S.
Minobe, J. Randerson, J.A. Screen, I.R. Simpson and M. Ting]

Perspective submitted 21 June 2019 to Nature Climate Change

Feedback welcome on MMLE Archive
Contributions welcome
Updates and bug fixes planned later this summer
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