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Outline

* Physical processes in an atmosphere GCM
e Distinguishing GCMs from other models (scales)
* Concept of ‘Parameterization’ of sub-grid processes

* Physics representations (CESM)
— Clouds (different types) and microphysics
— Radiation
— Boundary layers, surface fluxes and gravity waves
— Unified turbulence methodology (CESM2)

* Process interactions
 Model complexity, sensitivity and climate feedbacks
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Scales of Atmospherlc Processes
Determines the formulation of the model
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Equations of Motlon

Where do we put the physics (with the dynamics)?
Horizontal scales >> vertical scales

Vertical acceleration << gravity
dV/dt + fk x V+ Vo =F, F, (horizontal momentum)
dT/dt — kTw/p = Q] c,, Fr (thermodynamic energy)
V-V +0w5/0p =0, (mass continuity)
—> 0¢/p+RT/p=0, (hydrostatic equilibrium,)
dg/dt = 8,. Fow FoL For (water vapor mass continuity)
+transport

Harmless looking terms F, (), and S, = “physics”
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Resolved topography
- for CAM FV at
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Boundary Layer Clouds
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What is a ‘Parameterization

Represent impact of sub-grid scale
unresolved processes on resolved scale

Usually based on

— Basic physics (conservation laws of
thermodynamics)

— Empirical formulations from observations

In many cases: no explicit formulation

based on first principles is possible at Vertical eddy transport of x
: : 5

the level of detail desired. Why- Diffusivity’
— Non-linearities & interactions at ‘sub-grid’ /

scale = _ EpY
— Often coupled with observational X T TR _Z\

uncertainty

f Resolved

— Insufficient information in the grid-scale

parameters Unresolved ‘grid-scale’

‘sub-grid’
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Clouds
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Clouds

Multiple Categories

 Stratiform (large-scale) clouds
e Shallow convection clouds
* Deep convection clouds
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Stratiform Clouds (macrophy5|cs)
Sub-Grid Humidity and Clouds (different from high res)

v’ Liquid clouds form when relative humidity = 100% (g=q.,,)

v’ But if there is variation in RH in space, some clouds will form
before mean RH = 100%

v" RHcrit determines cloud fraction >0
Cloud 1 t  Assumed Cumulative

Fraction 1.0 Distribytiqn func_tion of
Humidity in a grid box

i
1
1
— i with sub-grid variation
Clear E
(RH < Rhcrit) i C|Oudy
0 | (RH = 100%)

RHcrit Mean Relative Humidity 100%
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Shallow and Deep Convectlon

Exploiting conservation properties

Common properties
Parameterize consequences of vertical displacements of air parcels

Unsaturated: Parcels follow a dry adiabat (conserve dry static energy)

Saturated: Parcels follow a moist adiabat (conserve moist static energy)

Shallow (10s-100s m) - local Deep (100s m-10s km) — non-local

Parcels remain stable (buoyancy<0) Parcels become unstable (buoyancy>0)
Shallow cooling mainly Deep heating

Some latent heating and precipitation Latent heating and precipitation
Generally a source of water vapor Generally a sink of water vapor

Small cloud radius large entrainment Large cloud radius small entrainment
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Shallow and Deep Convectlon

Closure: How much and when?

Shallow Deep
Convective inhibition (CIN) and turbulent Convective Available Potential Energy
kinetic energy (TKE) CAM5 (CAPE) CAM4/CAMS5/CAM®6
_ CAPE > CAPE, ;o0 Timescale=1 hour
Cumulus Top , < e T ng.u %0‘,
Overshooting { Penetrative /"5"
Zone Entrainment . s %
LNB — -4 -
b ..",/ ‘?ilf_:';: _, Entrainment
LFC of 4/ };/' M,,I Y 7/\ Detrainment
undiluted updraft ) i .
H L2 — I1+1/2

" cumuLus
o« _.i Ambiguous Layc

-b' BUOYANCY +b'

Shallow and deep convection and stratiform cloud fractions combined for radiation
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Cloud Microphysics

* Condensed phase water processes (mm scale)
— Properties of condensed species (=liquid, ice)

* size distributions, shapes

— Distribution/transformation of condensed species

* Precipitation, phase conversion, sedimentation ,

— TR ) 2O’y 0 n 24 =
g 3 - < )
) Q. - 4 o 7 - ©
0. > ) .

* Important for other processes:
— Aerosol scavenging
— Radiation

* In CAM = ‘stratiform’ cloud microphysics
— Convective microphysics very simplified

— Formulations currently being implemented into convection
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CAM Microphysics

g = mixing ratio

N = number concentration

Morrison & Gettelman 2008

q, N
Convective
Aerosols (CCN (IN Aerosols
(MAM4) | Number) a N a N Number) | (MAM4)
o Cloud Droplets Cloud Ice
+Radiati0n (Prognostic) (Prognostic) +Radiati0n
A A
Evap/Cond Dep/Sub
Autoconversion — q — il __ -
Water Vapor JAutoconversion (Au)
A ti . g
ceretion (Prognostic) I Accretion (Ac)
Evaporation Sublimation : Au "™ CIC/NC
Ac ™~ q,q.
h———ﬂ- E— - -
q'N q!N
v ¢ Rain Snow ¢
Sedimentation [Dlagnostlc] lDIagnOStlc] Sedimentation




Community Earth System Model Tutorial R L

N Wi

Radiation

The Earth’s Energy Budget

Trenberth & Fasullo, 2008 Global Energy Flows W m2

102\ Reflected Solar 341 Incoming 239 [ Outgoing
Radiation Solar Longwave
101.9Wm? Radiation f Radiation

\ ‘ 3413Wm? 2385wm? | Gas SW
Reflected by AbSOfptiOn

Clouds and : 2
Atmosphere xir:&s)svherlc (Wm )

Emitted by 169
Atmosphere —— C02 1
AN\ bsorbed by \,.Greenhouse
-\ 78 Atmosphere Gases | 02 )
17 80 NCd ‘ O 3 14
G\ 333 H,0 43
% Back 2
=) Radiation
=
17 80 e 333 +Condensed
Absorbed b < urface )
Surace || nermals Evapor T padiation  Absorbed by species: Clouds &
g Surface
Net absorbed Ae rOSOIS

0.9
~ Wm?
A P
tl

Bill Collins, Berkeley & LBL

Not Important for
~weeks forecast!
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Solar Radiation Spectrum
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From: ‘Sunlight’, Wikipedia
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Ultraviolet Visible Mear-IR Infrared Far-Infrared

IR absorption

Microwave
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“Greenhouse Gases”
“Absorption Windows”

1000nm = 1um
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Planetary Boundary Layer (PBL)

Regime dependent representations

(a)
e Vital for near-surface environment

(humidity, temperature, chemistry)

Ba
®
* Exploit thermodynamic conservation / &5 (R

(liquid virtual potential temperature 6,
* Conserved for rapidly well mixed PBL

e Critical determinant is the presence of
turbulence

 Richardson number

e <<1, flow becomes turbulent

e CAMS5: TKE-based Moist turbulence
(Park and Bretherton, 2009)
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Gravity Waves and Mountam Stresses

Sub-grid scale dynamical forcing
* Gravity Wave Drag

— Determines flow effect of upward
propagating (sub-grid scale) gravity waves N T~ —

that break and dump momentum %%

— Generated by surface orography (mountains) —
and deep convection Upper flow

e Turbulent mountain stress

— Local near-surface stress on flow

Lot flow — Genaration o turbulence by shoar

Leviaied fow

— Roughness length < scales < grid-scale
— Impacts mid/high-latitude flow (CAM5)

* More difficult to parameterize than
thermodynamic impacts (conservation?)
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Community Atmospﬁere Model

R’epresemmg the key atmospheric processes in CAM5
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CLUBB: Cloud Layers Unified By Binormals (CAM6)

Golaz 2002b, J. Atmos. Sci.

Zhang Cloud/Transport Scheme
McFarlane Microphysics Scheme
(ZM) ! !
1 1
1 1
Deep Cu .\></"—T- Double-moment

v
>

MBLtop:-" 4 DeepICu Single-
: moment

j PBL
NS h
| :"

' '
[ ; <
.

.

Unifies moist and dry turbulence (except deep convection — CAMS6)
’Seamless’ representation; no specific case adjustments

Unifies microphysics (across cloud types)

High order closures (1 third order, 6 second order, 3 first order-means)
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CLUBB: Cloud Layers Unified By Binormals (CAM6)

Golaz 2002b, J. Atmos. Sci.

h

— Predict joint PDFs of vertical velocity, temperature and moisture
— Assume double Gaussians can reflect a number of cloudy regimes
— Predict grid box means and higher-order moments

— Transport, generate, and dissipate mean moments (w’2,w[10,[],
Q)’qL’)
298.5

sgg Strato-Cu?

=3 (@ 2
= 296.5 2
296 =
295.5
295 7

-1 -0.5 0 05 1 295 296 297 298
w (m/s) 8, (K)



% VN
Community Earth System Model Tutorial . L ,1% Pty

Climate Sensitivity
What happens to clouds when we double CO2?

(Soden)
Change in low cloud amount (%)

« Significant range in low-cloud sensitivity (low and high end of models)

* Cloud regimens are largely oceanic stratocumulus (difficult to model)

» Implied temperatures change is due to (higher/lower) solar radiation
reaching the ground because of clouds feedbacks.
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Model physics: The future

Microphysics Species’ Characteristics

CLOUD ICE

Cloud super-parameterization

A SPCAM NNCAM CTRLCAM le-5

X 200 | SP-CAM (8$8)[| ML-CAM ($) CAM ($) 6
, g ‘ M
188 D £ 400 ‘ 2
o 0o ¥
= +
5 2

800 . 8 ) -

" Trained on (SP-CAM)
Regional grid and scale-aware physics Machine Learning (ML)

Rasp et al., (2018)
https://doi.org/10.1073/pnas.181028611"
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Summary

* GCMs physics=unresolved processes=parameterization

* Parameterization (CESM) = approximating reality
— Starts from and maintains physical constraints
— Tries to represent effects of smaller ‘sub-grid’ scales

* Fundamental constraints, mass & energy conservation

* Clouds are fiendishly hard: lots of scales, lots of phase
changes, lots of variability

* Clouds are coupled to radiation (also hard) = biggest
uncertainties (in future climate); largest dependencies

* CESM physics increasingly complex and comprehensive

e Future parameterizations aim to be process scale-aware
and model grid-scale independent
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