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Outline

• Physical processes in an atmosphere GCM

• Distinguishing GCMs from other models (scales)

• Concept of ‘Parameterization’ of sub-grid processes

• Physics representations (CESM)

– Clouds (different types) and microphysics

– Radiation

– Boundary layers, surface fluxes and gravity waves

– Unified turbulence methodology (CESM2)

• Process interactions

• Model complexity, sensitivity and climate feedbacks



Scales of Atmospheric Processes
Determines the formulation of the model

Resolved Scales

Climate Models

Forecast models

Future Climate Models
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Equations of Motion
Where do we put the physics (with the dynamics)?

Horizontal scales >> vertical scales

Vertical acceleration << gravity

FV

FQV, FQL, FQI

FT

+transport



Raw topography 

at 3km resolution



Resolved topography 

for CAM FV at 

0.9x1.25 (100 km) 

resolution



Boundary Layer Clouds

Alejandro Selkirk Island (33S 80W)
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What is a ‘Parameterization’?
• Represent impact of sub-grid scale 

unresolved processes on resolved scale

• Usually based on
– Basic physics (conservation laws of 

thermodynamics)

– Empirical formulations from observations

• In many cases: no explicit formulation 
based on first principles is possible at 
the level of detail desired. Why?
– Non-linearities & interactions at ‘sub-grid’ 

scale

– Often coupled with observational 
uncertainty

– Insufficient information in the grid-scale 
parameters

Unresolved

‘sub-grid’

Resolved

‘grid-scale’

‘Diffusivity’

Vertical eddy transport of χ



Clouds

100km

100km



Clouds
Multiple Categories

• Stratiform (large-scale) clouds

• Shallow convection clouds

• Deep convection clouds



Stratiform Clouds (macrophysics)
Sub-Grid Humidity and Clouds (different from high res)

 Liquid clouds form when relative humidity = 100%  (q=qsat)

 But if there is variation in RH in space, some clouds will form 
before mean RH = 100%

 RHcrit determines cloud fraction > 0

Mean Relative Humidity

Cloud

Fraction 1.0

100%

Clear
(RH < Rhcrit)

Cloudy
(RH = 100%)

Assumed Cumulative

Distribution function of

Humidity in a grid box 

with sub-grid variation

0.

RHcrit



Shallow and Deep Convection
Exploiting conservation properties

Common properties
Parameterize consequences of vertical displacements of air parcels

Unsaturated: Parcels follow a dry adiabat (conserve dry static energy)

Saturated: Parcels follow a moist adiabat (conserve moist static energy)

Shallow (10s-100s m) - local
Parcels remain stable (buoyancy<0)

Shallow cooling mainly

Some latent heating and precipitation

Generally a source of water vapor

Small cloud radius large entrainment

Deep (100s m-10s km) – non-local
Parcels become unstable (buoyancy>0)

Deep heating

Latent heating and precipitation

Generally a sink of water vapor

Large cloud radius small entrainment



Shallow and Deep Convection
Closure: How much and when?

Shallow
Convective inhibition (CIN) and turbulent 

kinetic energy (TKE) CAM5

Deep
Convective Available Potential Energy 

(CAPE) CAM4/CAM5/CAM6

CAPE > CAPEtrigger Timescale=1 hour

Shallow and deep convection and stratiform cloud fractions combined for radiation



Cloud Microphysics
• Condensed phase water processes (mm scale)

– Properties of condensed species (=liquid, ice)
• size distributions, shapes

– Distribution/transformation of condensed species
• Precipitation, phase conversion, sedimentation

• Important for other processes:

– Aerosol scavenging

– Radiation

• In CAM = ‘stratiform’ cloud microphysics

– Convective microphysics very simplified

– Formulations currently being implemented into convection



CAM Microphysics

Modal 

Aerosols

(MAM4)

+Radiation

Modal 
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Radiation
The Earth’s Energy Budget

Gas SW 
Absorption 

(Wm-2)

CO2 1

O2 2

O3 14

H2O 43

Bill Collins, Berkeley & LBL

Trenberth & Fasullo, 2008

+Condensed 

species: Clouds & 

Aerosols

Not Important for 

~weeks forecast!



From: ‘Sunlight’, Wikipedia

1000nm = 1mm

Input at TOA, Radiation at surface

(TOA)



IR absorption

1000nm = 1mm

“Greenhouse Gases”

“Absorption Windows”



Planetary Boundary Layer (PBL) 
Regime dependent representations

• Vital for near-surface environment 
(humidity, temperature, chemistry)  

• Exploit thermodynamic conservation 
(liquid virtual potential temperature θvl)

• Conserved for rapidly well mixed PBL

• Critical determinant is the presence of 
turbulence

• Richardson number

• <<1, flow becomes turbulent 

• CAM5: TKE-based Moist turbulence       
(Park and Bretherton, 2009)



Gravity Waves and Mountain Stresses
Sub-grid scale dynamical forcing

• Gravity Wave Drag
– Determines flow effect of upward 

propagating (sub-grid scale) gravity waves 
that break and dump momentum

– Generated by surface orography (mountains) 
and deep convection

• Turbulent mountain stress
– Local near-surface stress on flow 

– Roughness length < scales < grid-scale

– Impacts mid/high-latitude flow (CAM5)

• More difficult to parameterize than 
thermodynamic impacts (conservation?)
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o Unifies moist and dry turbulence (except deep convection – CAM6)

o ’Seamless’ representation; no specific case adjustments

o Unifies microphysics (across cloud types)

o High order closures (1 third order, 6 second order, 3 first order-means) 

Zhang 

McFarlane

(ZM)

PBL



– Predict joint PDFs of vertical velocity, temperature and moisture

– Assume double Gaussians can reflect a number of cloudy regimes

– Predict grid box means and higher-order moments

– Transport, generate, and dissipate mean moments (w’2,wL

w’qL’)

Strato-Cu?

Shallow-Cu?
Clear

Cloudy



Climate Sensitivity
What happens to clouds when we double CO2?

Change in low cloud amount (%)

GFDL Model +4.2K NCAR Model +1.8K

• Significant range in low-cloud sensitivity (low and high end of models)

• Cloud regimens are largely oceanic stratocumulus (difficult to model)

• Implied temperatures change is due to (higher/lower) solar radiation 

reaching the ground because of clouds feedbacks.



Model physics: The future

Cloud super-parameterizationNew and more complex processes

Regional grid and scale-aware physics Machine Learning (ML)

ML-CAM ($) CAM ($)SP-CAM ($$$)

Trained on (SP-CAM)

Rasp et al., (2018)

https://doi.org/10.1073/pnas.1810286115

https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1073/pnas.1810286115


Summary
• GCMs physics=unresolved processes=parameterization

• Parameterization (CESM) = approximating reality

– Starts from and maintains physical constraints

– Tries to represent effects of smaller ‘sub-grid’ scales 

• Fundamental constraints, mass & energy conservation

• Clouds are fiendishly hard: lots of scales, lots of phase 
changes, lots of variability

• Clouds are coupled to radiation (also hard) = biggest 
uncertainties (in future climate); largest dependencies

• CESM physics increasingly complex and comprehensive

• Future parameterizations aim to be process scale-aware
and model grid-scale independent



Questions?


