

WACCM: The High-Top Model

Michael Mills WACCM Liaison <u>mmills@ucar.edu</u> (303) 497-1425 <u>http://bb.cgd.ucar.edu</u>/

Whole Atmosphere Community Climate Model

NCAR

https://scied.ucar.edu/sites/default/files/images/large_image_for_image_content/stratosphere_diagram_big.jp

WACCM Additions to CAM

- Extends from surface to 5.1x10⁻⁶ hPa (~150 km), with 70 vertical levels
- Detailed neutral chemistry models
 - middle atmosphere (MA): catalytic cycles affecting ozone, heterogeneous chemistry on PSCs and sulfate aerosol, heating due to chemical reactions
 - troposphere, stratosphere, mesosphere, and lower thermosphere (TSMLT): adds chemistry affecting tropospheric air quality
- Prognostic stratospheric aerosols derived from sulfur emissions
- Model of ion chemistry in the mesosphere/lower thermosphere (MLT), ion drag, auroral processes, and solar proton events
- EUV and non-LTE longwave radiation parameterizations
- Gravity wave drag deposition from vertically propagating GWs generated by orography, fronts, and convection
- Interactive QBO derived from wave forcing
- Molecular diffusion and constituent separation
- Thermosphere extension (WACCM-X) to ~500-700 km

Community Earth System Model

WACCM Motivation

Roble, Geophysical Monograph, v. 123, p. 53, 2000

- Coupling between atmospheric layers:
 - Waves transport energy and momentum from the lower atmosphere to drive the QBO, SAO, sudden warmings, mean meridional circulation
 - Solar inputs, e.g. auroral production of NO in the mesosphere and downward transport to the stratosphere
 - Stratosphere-troposphere exchange
- Climate Variability and Climate Change:
 - What is the impact of the stratosphere on tropospheric variability?
 - How important is coupling among radiation, chemistry, and circulation? (e.g., in the response to O₃ depletion or CO₂ increase)
 - Response to solar variability: impacts mediated by chemistry?
- Interpretation of Satellite Observations

Atmospheric Science Across the Stratopause

Siskind, Stephen D. Lekermann, and Michael I.

NCAR

CESM2 components

NCAR

CESM2: WACCM6 & WACCM-X v2

	WACCM6	WACCM-X v2	
Vertical Levels	70, 88(SD)	126, 145(SD)	
Model Top	6x10⁻ ⁶ hPa (~140 km)	4x10 ⁻¹⁰ hPa (500-700 km)	
Horizontal Resolution	0.95°x1.25°, 1.9°x2.5°	1.9°x2.5°	
Time step	30 minutes	5 minutes	
Specified Dynamics	SD-WACCM6 option	SD-WACCM-X option	
Chemistry	TSMLT (233), MA (99), SC (37)	MA (76)	
QBO	Interactive at 0.95°x1.25°, Nudged at 1.9°x2.5°	Nudged	
Tropospheric Physics	CAM6	CAM4	
Radiation	RRTMG	CAM-RT	
Tropospheric Aerosol	Interactive MAM4	Prescribed Bulk	
Stratospheric Aerosol	Interactive MAM4	Prescribed	
Non-orographic GW	Yes	Yes	
Molecular Diffusion	minor	minor and major	
Auroral Physics	Yes	Yes	
lons	E-region or E&D-region	E-region	
Ion transport	No	Yes	
E Dynamo	No	Yes	

WACCM component configurations

Whole Atmosphere Community Climate Model Community Earth System Model

Specified Dynamics: SD-WACCM and SD-CAM-Chem

- Reproduce winds and temperatures from specific periods in analyses from GEOS5 (2004-present) or MERRA (1979-present).
- FSDW compset starts on 1 Jan 2005, uses GEOS5, out of the box.
- Increased vertical resolution
 - CAM-Chem: 32 levels \rightarrow SD-CAM-Chem: 56 levels
 - WACCM: 70 levels \rightarrow SD-WACCM: 88 levels
- Nudge T, U, V, PS towards analyses at every dynamics timestep. Nudging strength (i.e. 1%, 10% each timestep) and top altitude (50 km default for WACCM) can be adjusted.
- Chemistry interacts with radiation, atmosphere, land, ocean
- Data ocean and sea ice components

WACCM Gravity Wave Parameterization

1. Orographic GWs:

Uncertain: Efficiency

Orographic GWs:

- McFarlane (1987)
- 1 wave with c = 0
- Amplitude dependent on orography height and wean wind

2. Frontally generated GWs:

Uncertain: Efficiency, amplitude, phase speeds

- 40 waves with -100 < c < 100 m/s
- Gaussian distribution in phase speed centered at U 600 mb
- Constant wave amplitude

3. Convectively generated GWs:

Uncertain: Efficiency, amplitude conversion

40 waves with -100 < c < 100 m/s
Dominant c related to h (depth of heating)
Wave Amplitude ~ Q²

• Wave spectrum impacted by wind in heating

Beres et al. 2004 (Beres = Richter)

Richter et al. 2010

QBO: 70 vs 110L WACCM

Water vapor "tape recorder"

ACCM

NCAR

Community Earth System Model

Volcanic eruptions SO₂ database (1850-2016)

- Volcanic eruptions increasingly well characterized (Satellite retrievals, in-situ measurements, geochem. & geophys. monitoring)
- 1979 first TOMS volcanic SO₂ retrievals
- Compiled volcanic emission dataset for use in climate models

WACCM

Whole Atmosphere Community Climate Model

WACCM

NCAR

Whole Atmosphere Community Climate Model

Figure from Gettelman et al., submitted to JGR, 2019.

Direct radiative effects of stratospheric sulfate

Top-of-atmosphere radiative flux response to Pinatubo eruption agrees well with satellite observations.

NCAR

al stratospheric temperatures compare very well to observations, including volc

Figure from Gettelman et al., submitted to JGR, 2019.

Warming in coupled historical simulations

NCAR

- WACCM6 reproduces well the observed evolution of the Antarctic ozone hole, and Arctic ozone loss.
- Nudged with specified dynamics, WACCM6 reproduces the observed interannual variability at both poles.

Figure from Gettelman et al., submitted to JGR, 2019

NCAR

Whole Atmosphere Community Climate Model

Total Column Ozone (TOZ), SD configuration

Slide courtesy of D. Kinnison.

WACCM and CAM-Chem Customer Support

CGD Forum: <u>http://bb.cgd.ucar.edu</u>/

Mike Mills WACCM Liaison mmills@ucar.edu (303) 497-1425

Simone Tilmes CAM-Chem Liaison tilmes@ucar.edu (303) 497-1425

Extra slides

WACCM

CESM2 atmosphere components

WACCM costs (approximate)

Configuration	Resolution	Chemistry	Core-hours / simulation year
CAM6	1°, 32L	CAM	3,700
WACCM6	2°, 70L	MA	5,400
WACCM6	1°, 70L	TSMLT	22,000
WACCM6-SC	1°, 70L	SC	6,000
WACCM6-SD	1°, 88L	TSMLT	23,000
WACCM5.4	1°, 110L	MA	20,000
WACCM5.4-SC	1°, 110L	SC	9,000

WACCM version evolution

Common Name	WACCM4	WACCM-CCMI	WACCM5	WACCM6
Horizontal Resolution	$1.9^{\circ} \mathrm{x} 2.5^{\circ}$	$1.9^{\circ} \mathrm{x} 2.5^{\circ}$	$0.95^{\circ} \mathrm{x} 1.25^{\circ}$	$0.95^{\circ} x 1.25^{\circ}$
Vertical Levels	66	66	70	70
Deep Convection	ZM	ZM	ZM^*	ZM^*
Boundary Layer	HB	HB	UW	CLUBB
Shallow Convection	Hack	Hack	UW	CLUBB
Macrophysics	RK	RK	Park	CLUBB
Microphysics	RK	RK	MG2	MG2
Radiation	CAMRT	CAMRT	RRTMG	RRTMG
Aerosols	Bulk	Bulk	MAM3	MAM4
QBO	Nudged	Nudged	Interactive	Interactive
Chemical Mechanism	MA(59)	TSMLT (180)	MA(59)	TSMLT1 (228)
Chemical Rates	JPL-06	JPL-11	JPL-06	JPL-15
SOA	2-product	2-product	SOAG	VBS
Sulfate SAD	CCMVal2	CCMI	Interactive	Interactive
Ice SAD	Bulk	Bulk	Bulk	MG2
Solar Variability	CMIP5-Solar	CCMVal2-Solar	CMIP5-Solar	CMIP6-Solar
GHG Abundances	CMIP5 RCPs	CMIP5 RCPs	CMIP5 RCPs	CMIP6 SSPs
Halogens	CMIP5 RCPs	WMO 2010	CMIP5 RCPs	$\rm CMIP6 \ SSPs$

WACCM6 highlights (from Gettelman et al., 2019)

SSW Climatology (Nov-Mar); 3 realizations

Coupled ocean

Specified SST

NCAR

WACCM Sulfate Geoengineering Feedback Simulations

Whole Atmosphere Community Climate Model

Oct 26 2020

Whole Atmosphere Community Climate Model

Why WACCM-X?

Because the thermosphere- ionosphere system responds to variability from the Earth's lower atmosphere as well as solar-driven "space weather"

Including:

- Waves and tides
- Tropospheric weather
- Middle-atmosphere events
- Seasonal variations
- Anthropogenic trace gases

Community Earth System Model

Ozone layer evolution

SBUV-MOD Historical AMIP SD-MERRA2

Biases in free-running WACCM6 at mid-latitudes and in the tropics are not seen in SD-WACCM6.

Tropical upwelling vertical velocity is high in WACCM6 compared to SD, enhancing advection of ozonepoor air from the troposphere.

WACCM6 has higher September NH SIE than CAM6, in better agreement with observations.

ССМ

Analysis: Less downward surface SW and LW in WACCM6 due to higher LWP, which results from higher aerosol number. The higher aerosol number increases CCN and cloud drop number, resulting in smaller drops that do not precipitate as readily. Thus the tropospheric aerosol chemistry impacts Arctic sea ice.

NCAR

WACCM historical and future scenarios

NCAR

connunty connute model

Community Exth-System Model Sensitivity: WACCM vs

NCAK

Community Earth-System Model Sensitivity: WACCM vs

NCAR