Porting CIME based models

Jim Edwards
CESM Software Engineering Group

Options for porting CIME

- 1. Using the predefined 'homebrew' or 'centos7-linux' definitions
 - A good option for personal use on a mac or centos based system with gnu compilers
 - May require root access to the system to install prerequisites.
- 2. Defining a new machine locally in your \$HOME/.cime directory
 - A good option for personal use when option 1 won't work.
- 3. Defining a new machine and submitting a CIME pull request
 - Use this when the system is to be shared among multiple users.

The \$HOME/.cime directory

When you use a CIME model it will look for a directory \$HOME/.cime

You may put several files in that directory for CIME to use.

- 1. config: custom settings used by the python scripts
- 2. config_machines.xml: custom machine description
- 3. config_compilers.xml: custom compiler instructions
- 4. config_batch.xml: custom batch system instructions

Using homebrew or centos7-linux

1. homebrew (for macs)

- Install homebrew https://brew.sl
- o Install gcc
- o Install netcdf and mpich with the --build-from-source -cc=gcc-8 options
- Create directories \$HOME/projects/scratch \$HOME/projects/cesm-inputdata
- Use the --machine homebrew option to create_newcase

2. centos7-linux

- Install modules (modules.sourceforge.net)
- Install gcc, mpich, netcdf as modules
- Create directories \$HOME/cesm/inputdata \$HOME/cesm/scratch
- Use the --machine centos7-linux option to create_newcase

Steps for Porting CIME using files in \$HOME/.cime

- Copy cime/config/xml_schemas/config_machines_template.xml to \$HOME/.cime/config_machines.xml
- 2. Edit that file and change values to fit your machine
- 3. Create, build and submit a case.
 - a. If build errors occur due to incompatible compiler flags edit the file Macros.make to resolve.
 - b. If submit errors occur due to incompatible batch system flags edit env batch.xml to resolve.
- 4. Once you can successfully build and submit a case transfer the changes in Macros.make to \$HOME/.cime/config_compilers.xml and those in env_batch.xml to \$HOME/.cime/config_batch.xml
- 5. Run CIME system tests to verify port.

config

The config file may contain custom settings for several variables used by the case control (python) code, it may also be used to customize the case control code logging system.

Most ports will not require this file.

This file contains most of the details CIME needs to know about your machine.

If your machine is not defined by the default config_machines.xml file this is where you should begin.

You may start by copying the file cime/config/xml_schemas/config_machines_template.xml

to \$HOME/.cime/config_machines.xml

You will then edit the file and fill in the required information.

These file header lines should not require any changes:

```
<?xml version="1.0"?>
```

<!-- This is an ordered list, not all fields are required, optional fields are noted below. -->

```
<config_machines version="2.0">
```

<!-- MACH is the name that you will use in machine options -->

The machine definition starts with a name and a description, the name must be unique in config_machines.xml:

```
<machine MACH="mymachine">
```

<!-- DESC: a text description of the machine, this field is current not used in code-->

<DESC>SITE VENDOR platform, os is ---, xx pes/node, batch system is ---</DESC>

The next field is an optional identifier, NODENAME_REGEX which will make the --machine command line entry optional

<!-- NODENAME_REGEX: a regular expression used to identify this machine it must work on compute nodes as well as login nodes, use machine option to create_test or create_newcase if this flag is not available -->
<NODENAME_REGEX>.*.cheyenne.ucar.edu


```
Next we need to indicate what Operating System is used here:
      <!-- OS: the operating system of this machine. Passed to cppflags for
           compiled programs as -DVALUE recognized are LINUX, AIX, Darwin, CNL -->
       <OS>LINUX</OS>
          <!-- PROXY: optional http proxy for access to the internet-->
       <PROXY> https://howto.get.out </PROXY>
COMPILERS is a list of compiler names available on this system, these must each match a compiler name in
           <!-- COMPILERS: compilers supported on this machine, comma separated list, first is default --
       <COMPILERS>intel,qnu</COMPILERS>
MPILIBS
           <!-- MPILIBS: mpilibs supported on this machine, comma seperated list,
       <MPILIBS>mpt,openmpi,impi</MPILIBS>
```

PROJECT (optional)

<!-- PROJECT: A project or account number used for batch jobs can be overridden in environment or \$HOME/.cime/config -->

- <!-- DIN_LOC_ROOT: location of the inputdata data directory
 inputdata is downloaded automatically on a case by case basis as
 long as the user has write access to this directory. We recommend that
 all cime model users on a system share an inputdata directory
 as it can be quite large -->
- <DIN_LOC_ROOT>\$ENV{CESMDATAROOT}/inputdata//pin_LOC_ROOT>
- <!-- DOUT_S_ROOT: root directory of short term archive files, short term archiving moves model output data out of the run directory, but keeps it on disk-->
- <DOUT_S_ROOT>\$CIME_OUTPUT_ROOT/archive/\$CASE</DOUT_S_ROOT>
- <!-- BASELINE_ROOT: Root directory for system test baseline files -->
- <BASELINE_ROOT>\$ENV{CESMDATAROOT}/cesm_baselines/BASELINE_ROOT>
- <!-- CCSM_CPRNC: location of the cprnc tool, compares model output in testing-->
- <CCSM_CPRNC>\$ENV{CESMDATAROOT}/tools/cime/tools/cprnc/cprnc.cheyenne</CCSM_CPRNC>

<!-- BATCH_SYSTEM should match a name in config_batch.xml

<!-- BATCH_SYSTEM: batch system used on this machine,

supported values are: none, cobalt, lsf, pbs, slurm -->

<BATCH_SYSTEM>pbs</BATCH_SYSTEM>

<!-- SUPPORTED_BY: contact information for support for this system
this field is not used in code -->
<SUPPORTED_BY>cseg</SUPPORTED_BY>

- <!-- MAX_TASKS_PER_NODE: maximum number of threads*tasks per shared memory node on this machine, should always be >= PES PER NODE --> <MAX TASKS PER NODE>36</MAX TASKS PER NODE>
 - <!-- PES PER NODE: number of physical PES per shared node on this machine, in practice the MPI tasks per node will not exceed this value --> <MAX MPITASKS PER NODE>36</MAX MPITASKS PER NODE>

<!-- PROJECT REQUIRED: Does this machine require a project to be specified to the batch system? See PROJECT above --> <PROJECT REQUIRED>TRUE</PROJECT REQUIRED>

Software module systems

```
<!-- allowed types are none, module, soft -->
  <module_system type="module">
  <modules>
    <command name="purge"/>
    <command name="load">ncarenv/1.0</command>
  </modules>
  <modules compiler="intel">
    <command name="load">intel/16.0.3</command>
    <command name="load">mkl</command>
  </modules>
  </modules>
  </module system>
```

```
<env name="OMP STACKSIZE">256M</env>
```

Closure:

</machine>

Test and confirm xml correctness:

xmllint --noout --schema cime/config/xml schemas/config machines.xsd \$HOME/.cime/config_machines.xml

Expected result:

\$HOME/.cime/config machines.xml validates

config_compilers.xml

The config_compilers.xml file has a default definition for each supported compiler.

This definition can be amended with a machine specific section:

config_compilers.xml

Test and confirm xml correctness:

xmllint --noout --schema cime/config/xml_schemas/config_compilers.xsd \$HOME/.cime/config_compilers.xml

Expected result:

\$HOME/.cime/config_compilers.xml validates

In addition make sure that the generated Macros.make is as expected.

config_batch.xml

Default definitions for each batch queueing system which can be amended.

scripts_regression_tests.py

- A porting test for basic model functionality.
- requires that you build and install cprnc
- optionally uses pylint (install using pip or conda)
- Run from cime/scripts/tests

The CESM UltraFast Ensemble Consistency Test

With this test you will conduct three model runs of 9 timesteps each.

Postprocess the output files to add metadata about the origin of the run.

Upload to

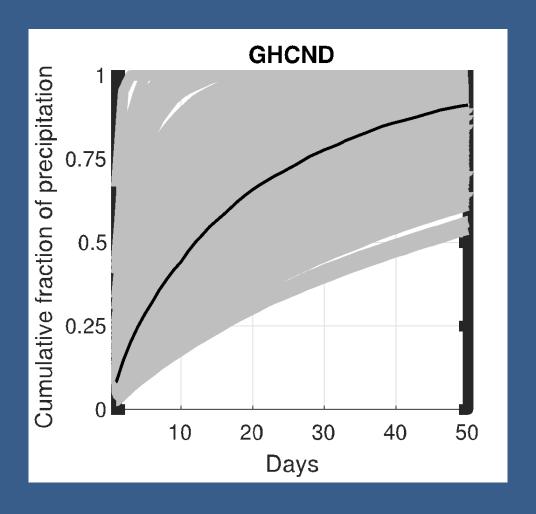
Your runs are then compared to an ensemble of about 300 members.

Pass or Fail is determined by whether your runs fit within the bounds of the ensemble.

http://www.cesm.ucar.edu/models/cesm2/python-tools/ for details See

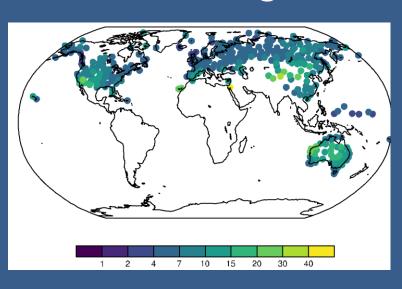
Resources for help

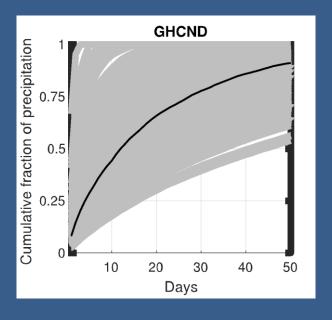
CGD Forum: http://forum.cgd.ucar.edu/


ESMCI development (CIME): https://github.com/ESMCI/cime

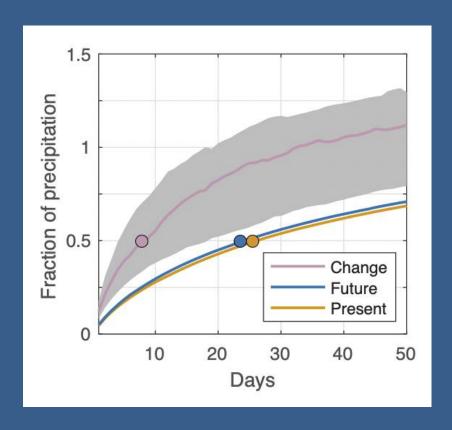
Questions / Comments?

<u>jedwards@ucar.edu</u>


Example image slide with smaller title font



Example comparison slide


First Image

Second Image

Example image & text slide

Warming Increases Unevenness

> Multi-model median Land Median