

### **Behind the scenes of CESM development**

# The Art of Tuning and Coupling

Cécile Hannay

National Center for Atmospheric Research (NCAR)



NCAR is sponsored by National Science Foundation

### **CESM2: Development of the individual components**

#### Phase I:"Let's build it" (5 years)

- Individual components were built within each working group
- Effort started around 2010



### **CESM2: Coupling of the individual components**

#### Phase 2: "Let's put it together" (3 years)

- Collaborative effort started in Nov 2015
- Many meetings with "everybody"
- 300 configurations
- Thousands of simulated years and diagnostics

#### **CESM2 Release: June 2018**

### Development requires: Tuning and Coupling

In this talk, we'll focus on these aspects





# **The Art of Tuning**



Tuning = adjusting parameters ("tuning knobs")
to achieve best agreement with observations.

**Tuning =** adjusting parameters ("tuning knobs") to achieve best agreement with observations.

Tuning knobs = parameters weakly constrained by observations

**Dcs = Threshold diameter to convert cloud ice particles to snow** 



**Cirrus clouds** 

- cloud made up of ice crystals
- altitudes higher 5 km
- big ice crystals fall out of the cloud
   => cloud ice "convert" to snow

**Tuning =** adjusting parameters ("tuning knobs") to achieve best agreement with observations.

Tuning knobs = parameters weakly constrained by observations

**Dcs = Threshold diameter to convert cloud ice particles to snow** 



**Cirrus clouds** 

- cloud made up of ice crystals
- altitudes higher 5 km
- big ice crystals fall out of the cloud
   => cloud ice "convert" to snow

**Dcs = threshold diameter** 

**Dcs = Threshold diameter to convert cloud ice particles to snow** 



Larger Dcs







Less cloud ice

More cloud ice

What is the impact on climate ?

Dcs = Threshold diameter to convert cloud ice particles to snow



More cloud ice => less infrared radiation (IR) go to space

### **Aside: Cloud forcing**

#### Shortwave (solar) radiation



Shortwave radiation comes from the sun

Shortwave is scattered by clouds. Many of the rays return to space. ⇒ Cooling of the Earth



Typical impact for stratocumulus

#### Longwave (IR) radiation



Longwave rays emitted by the Earth Longwave absorbed/reemitted by clouds Some rays going to the surface. => Warming of the Earth



Typical impact for cirrus cloud

# Tuning = adjusting parameters ("tuning knobs") to achieve best agreement with observations



#### Adjust Dcs



#### Top of atmosphere radiative balance should be near zero

#### Why is it so important to tune atmosphere radiative balance?



#### If the atmosphere radiative balance is positive, the ocean is warming

Top of atmosphere radiative balance should be near zero

Other targets when tuning

- Cloud forcing
- Precipitation
- ENSO amplitude
- AMOC
- Sea-ice thickness/extent

### **Dilemmas while tuning**

• Subjectivity of tuning targets

Tuning involves choices and compromises Overall, tuning has limited effect on model skills

• Tuning for pre-industrial  $\Leftrightarrow$  Tuning for present day

Pre-industrial: Radiative equilibrium Present day: Available observations

Tuning individual components <-> Tuning coupled model

Tuning individual components is fast But no guarantee that results transfer to coupled model

• Tuning exercise is very educative

We learn a lot about the model during the tuning phase.



# The Art of Coupling

# **Coupling = Unleashing the Beast**

#### **AMIP** run

- Prescribed SSTs
- No drift

#### **Coupled run**

- Fully active ocean
- Coupled bias and feedback



SSTs = Sea Surface Temperatures AMIP = type of run when SST are prescribed

# Example of unleashing the beast (1)

### Tuning CAM5 (CESM1 development, 2009)

- Tuning was done in AMIP mode: looks like "perfect" simulation
- In coupled mode: strong cooling of the North Pacific (bias > 5K)





#### -10 -8 -6 -5 -4 -3 -2 -1 -0.5 0 0.5 1 2 3 4 5 6 8 10

#### **Courtesy Rich Neale**

CAM = Community Atmospheric Model SST = Sea Surface Temperature AMIP = type of run when SST are prescribed

#### Evolution of the SST errors (K)

# Example of unleashing the beast (1)

### Tuning CAM5 (CESM1 development, 2009)

- Tuning was done in AMIP mode: looks like "perfect" simulation
- In coupled mode: strong cooling of the North Pacific (bias > 5K)



### **Coupling = Unleashing the Beast**



### Example of unleashing the beast (2)

### Spectral Element dycore development (CESMI.2, 2013)

Finite Volume (FV)

Spectral Element (SE)



# Example of unleashing the beast (2)

### Spectral Element dycore development (CESMI.2, 2013)

- In CAM standalone: Finite Volume (FV) and Spectral Element (SE) dycores produces very similar simulations.
- In coupled mode: SSTs stabilize 0.5K colder with SE dycore





Changes in location of upwelling zones associated with ocean circulation is responsible of the SST cooling

### **Coupling = Unleashing the Beast**



### **Example of unleashing the beast (3)**

### The Labrador Sea issue (CESM2 development, 2016)

• The Labrador Sea was freezing in CESM2\_dev.



Sea-ice extent is close to obs. Labrador sea is ice free

Labrador sea is ice-covered. Can happen after I yr, 40 yr, 100<sup>+</sup> yr

# **Example of unleashing the beast (3)**

10

8 6

2 0 -2

-6 -8

-10

2 1.6 1.2 0.8 0.4 0 -0.4 -0.8 -1.2

-1.6 -2

### The Labrador Sea issue (CESM2 development, 2016)

Why was Labrador Sea freezing?



#### CESMI

**Too cold and too fresh South of Greenland => Labrador Sea freezes** 

### **Coupling = Unleashing the Beast**



# Summary

### The Art of Tuning

Tuning = adjusting parameters ("tuning knobs") to achieve best agreement with observations.

- Tuning involves choice and compromise
- We learn a lot about the model while tuning

### The Art of Coupling

Three examples of coupling challenge

- CESMI: cold SST bias in North Pacific with CAM5
- CESMI.2: SSTs stabilize 0.5K colder with SE dycore
- CESM2: Labrador Sea is ice-covered



