Land Modeling II: Biogoechemistry

NCAR

"Climate change made devastating early heat in India and Pakistan 30 times more likely"

THE NATIONAL ACADEMIES

https://www.worldweatherattribution.org/

Ecological Impacts of Climate Change (2009): <u>www.nas.edu/climatechange</u>.

Land biogeochemistry in CESM?

Why?

How?

Uncertainties and Future directions.

3

Land biogeochemistry in CESM?

Why?

Ecosystems & Climate Change You can't eat the MJO

Biogeochemistry = Carbon cycle

Ecosystem services at global scales

Friedlingstein et al. 2022 Global Carbon Budget 2021

CESM Workshop

NCAR

UCAR

Ecosystem services at global scales

Friedlingstein et al. 2022 Global Carbon Budget 2021

NCAR CESM Workshop

Idealized experiments C4MIP

I% CO2 / year
 Land & Ocean uptake
 Temperature change
 Fully coupled
 Biogeochemically coupled
 Radiatively coupled

Arora et al. 2020

CESM Workshop

wwieder@ucar.edu

9

Idealized experiments

Arora et al. 2020

wwieder@ucar.edu

/10/

Idealized experiments

Arora et al. 2020

Idealized experiments

- Land BGC is hard
 CO₂ fertilization
 Warming response
 - Ocean BGC is boring Resulting uncertainty matters for warming!

Arora et al. 2020

Huge pools Large fluxes Sink = small residual

https://serc.carleton.edu/integrate/teaching_materials/earth_modeling/ student_materials/unit9_article1.html

Land biogeochemistry in CESM?

Why?

How?

"Bretherton diagram" showing the concept of an Earth System Model

Full-Form Earth System Models: Coupled Carbon-Climate Interaction Experiment (the "Flying Leap")

by Inez Fung, Peter Rayner, and Pierre Friedlingstein; Edited by Dork Sahagian

IGBP Newsletter, May 2000. The flying leap proposal was to make atmospheric CO2 a prognostic variable in climate models du

NCAR and CESM were key players in the development of the concept and creation of the first coupled carbon cycle models through the "Flying Leap" experiment (which led to C4MIP experiments).

- + Coupled C-N biogeochemistry, CESMI
- + Explicit crop management, CESM2

Every tonne of CO_2 emissions adds to global warming

°C

Global surface temperature increase since 1850-1900 ($^{\circ}$ C) as a function of cumulative CO₂ emissions (GtCO₂)

Slide from A. Swann, BGCWG

"Bretherton diagram" showing the concept of an Earth System Model

NCAR

UCAR

CESM Workshop

Lawrence et al 2019, JAMES https://github.com/ESCOMP/ctsm

Leaves

Farquhar Photosynthesis Medlyn Stomatal Conductance Canopy Two stream approximation, sunlit / shaded

Allocation Respiration, leaves, wood, roots

Phenology mortality and turnover (e.g., evergreen, drought or stress deciduous)

Decomposition

NCAR

UCAR

GPP - Gross Primary Productivity

AR – Autotrophic respiration

NPP – Net primary productivity = GPP - AR ELAI – Leaf Area Index

HR – Heterotrophic Respiration

NEP – Net Ecosystem Production = GPP – AR – HR NEE – Net Ecosystem Exchange = NEP – Fire NBP = NEE – Land Use - Harvest Leaves

Farquhar Photosynthesis Medlyn Stomatal Conductance Canopy Two stream approximation, sunlit / shaded

Allocation Respiration, leaves, wood, roots

Phenology mortality and turnover (e.g., evergreen, drought or stress deciduous)

Decomposition

CESM Workshop

wwieder@ucar.edu

Lawrence et al 2019, JAMES https://github.com/ESCOMP/ctsm

Agriculture in CLM5

Agriculture in CLM5

Cotton

Rice

CESM Workshop

wwieder@ucar.edu

* Temperate and tropical varieties 23

Agriculture in CLM5

Fertilize

Irrigate

Transient fertilizer and irrigation (1850-2100) 1850 fertilizer assumed to be from manure only

NCAR CESM Workshop

Where do parameterizations come from?

I. Laboratory understanding: of plant physiological processes

e.g., Photosynthesis is co-limited by: light, energy, export of sugars

2. Empirical relationships: From as large a sample of the real world as possible

e.g., TRY Database (Leaf N and dark respiration)

3. Optimality theory: plants are rational actors, on average

e.g., FUN and LUNA modules

NCAR

UCAR

the **Evolution** of land modeling

Land biogeochemistry in CESM?

Why?

How?

Uncertainties and Future directions.

Represent land C sink!

wwieder@ucar.edu

Danabasoglu et al 2020 JAMES

28/

Objectively 'better' carbon cycle

	(1)	(3)	(10)	Ξ	2	3)
	CESM1	CESM1	CESM1	CESM2	CESM2	CESM2
Ecosystem and Carbon Cycle						
Biomass						
Burned Area						
Carbon Dioxide						
Gross Primary Productivity						
Leaf Area Index						
Global Net Ecosystem Carbon Balance						
Net Ecosystem Exchange						
Ecosystem Respiration						
Soil Carbon						
Hydrology Cycle						
Evapotranspiration						
Evaporative Fraction						
Latent Heat						
Runott						
Sensible Heat						
Terrestrial Water Storage Anomaly						
Permafrost						
Radiation and Energy Cycle						
Albedo						
Surface Upward SW Radiation						
Surface Net SW Radiation						
Surface Upward LW Radiation						
Surface Net LW Radiation						
Surface Net Radiation						

	1)	2)	10)	1	2)	6
	11(VII(M1(M2(M2(M2(
	CES	CES	S	CESI	GESI	GES
Forcings						
Surface Air Temperature						
Diurnal Max Temperature						
Diurnal Min Temperature						
Diurnal Temperature Range						
Precipitation						
Surface Relative Humidity						
Surface Downward SW Radiation						
Surface Downward LW Radiation			-			
Relationships						
Burned Area vs Precipitation						
Burned Area vs Surf Air Temp						
GPP vs ET.						
GPP vs Precipitation						
GPP vs Surf Down SW Radiation						
GPP vs Surf Net SW Radiation						
GPP vs Surf Air Temp						
LAI vs Precipitation						
ET vs Precipitation						
ET vs Surf Air Temp						

Atmospheric CO2 Simulated by CESM2

CO, Concentration (ppm)

400

420

0:59 / 1:41

UCAR

CESM Workshop

wwieder@ucar.edu

440

Danabasoglu et al 2020 JAMES

CESM2

Objectively 'better' carbon cycle

31

CESMI

Objectively 'better' carbon cycle

CLM

NCAR UCAR

Objectively 'better' carbon cycle For less wrong reasons

33/

LMWG priorities for CESM3+

How do ecosystem function and vulnerabilities transform under climate change?

4. 1. Ar. #19.00

CTSM Representative Hillslope

CTSM Representative Hillslope

Soil Moisture Heterogeneity

Saturation Lon: 238.25 \ Lat: 36.75

High Resolution Mapping of CTSM Hillslope Output

CESM Workshop

UCAR

CTSM & FATES

Functionally Assembled Terrestrial Ecosystem Simulator (FATES)

Vegetation structure in FATES

CTSM & FATES

Each time-since-disturbance tile contains cohorts of plants, defined by PFT and size

CTSM & FATES

More complexity

- •Fire
- •Nutrients

NCAR

UCAR

- •Crown damage
- •Hydraulic Stress
- •Land Management

Reduced Complexity Modes

Satellite Phenology
No competition
Fixed Biogeography
Prescribed physiology

CTSM & MIMICS

Functional traits and the global C cycle

We consider biology above ground and at sea, what about in the world beneath our feet?

How do ecosystem function and vulnerabilities transform under climate change?

- Community Terrestrial Systems Model: Land model used for climate change and weather predictions that can be run at single points (~ I ha) to global scale.
- Hillslope Hydrology: Considers effects of aspect, elevation, and hydrologic connectivity on water availability (feature within CTSM).
- FATES: Represents vegetation demographics, traits, and recovery from disturbance (feature within CTSM).
- **MIMICS**: Soil biogeochemistry model (explicitly represent microbial activity and physiological diversity).

NCAR

ICAR

wwieder@ucar