CESM Tutorial 2022

Earth System Prediction using CESM

Stephen Yeager Climate and Global Dynamics Laboratory, NCAR

NSP

August 12, 2022

CESM Tutorial 2022

Seasonal to Decadal Earth System Prediction using CESM

Stephen Yeager Climate and Global Dynamics Laboratory, NCAR

NSP

August 12, 2022

Aim to use CESM for <u>climate</u> prediction, not weather prediction!

Greenhouse Gas Emissions

Can only forecast probabilities

NCAR UCAR

a Predictability sources and timescales

Meehl et al. (2021, *Nature Reviews*, https://doi.org/10.1038/s43017-021-00155- x)

Forced Variability & Change

Internal Variability

Forced Variability & Change

Internal Variability

Forced Variability & Change

Internal Variability

Decadal Prediction System Design

- Ensemble simulations are ~10-years long & initialized every year
- Aim to verify hindcasts against observed **annual or multiyear-average** climate statistics

Seasonal Prediction System Design

- Ensemble simulations are ~12-months long & initialized every month
- Aim to verify hindcasts against observed monthly or seasonal-average climate statistics

The CESM Decadal Prediction Large Ensemble (CESM-DPLE)

PREDICTING NEAR-TERM CHANGES IN THE EARTH SYSTEM

A Large Ensemble of Initialized Decadal Prediction Simulations Using the Community Earth System Model

S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski

A new community data resource offers unique capabilities for evaluating the potential for useful Earth system prediction on decadal time scales.

BAMS, 2018, doi:10.1175/BAMS-D-17-0098.1

- ~26,000 sim-year experiment using CESM1
- Includes ocean biogeochemical fields
- <u>http://www.cesm.ucar.edu/projects/community-projects/DPLE/</u>

DP systems leverage predictability coming from slow ocean adjustments

AMOC gets strong/weak on decadal timescales

Plots from Zhang & Delworth (GRL 2006, doi:10.1029/2006GL026267)

CESM-DPLE Skill for Sea Surface Temperature & Precipitation

Ensemble Size

- High, long-lasting skill in N. Atlantic attributable to ocean (AMOC) initialization ٠
- Noteworthy skill at predicting regional climate variations over land (e.g., African Sahel)
- 40-member ensemble helps to maximize skill ٠

Yeager et al. (2018, BAMS)

over

The CESM2 Seasonal-to-Multiyear Large Ensemble (SMYLE)

The Seasonal-to-Multiyear Large Ensemble (SMYLE) Prediction System using the Community Earth System Model Version 2

Stephen Gerald Yeager¹, Nan Rosenbloom¹, Anne A. Glanville¹, Xian Wu¹, Isla Simpson¹, Hui Li¹, Maria J. Molina¹, Kristen Krumhardt¹, Samuel Mogen², Keith Lindsay¹, Danica Lombardozzi¹, Will Wieder¹, Who Myung Kim¹, Jadwiga H. Richter¹, Matthew Long¹, Gokhan Danabasoglu¹, David Bailey¹, Marika Holland¹, Nicole Lovenduski², and Warren G. Strand¹

¹National Center for Atmospheric Research, Boulder, Colorado, USA

²Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA

GMD, 2022, doi: 10.5194/gmd-2022-60

- ~8,000 sim-year experiment using CESM2
- Includes ocean biogeochemical fields
- <u>https://www.cesm.ucar.edu/working-groups/earth-system-prediction/simulations/smyle/</u>

The CESM2 Seasonal-to-Multiyear Large Ensemble (SMYLE)

- 4x/year initialization (1st of Feb, May, Aug, Nov)
- 20-member ensembles
- 24-month simulations

- Good ENSO prediction skill (comparable to operational seasonal forecasting centers)
- Powerful tool for exploring ENSO-related predictability mechanisms

Interested?

• Get involved in the CESM Earth System Prediction Working Group (ESPWG)!

website: https://www.cesm.ucar.edu/working_groups/earth-system-prediction/

mailing list: <u>http://mailman.cgd.ucar.edu/mailman/listinfo/cesm-espwg</u>

co-chairs: Steve Yeager (yeager@ucar.edu), Yaga Richter (jrichter@ucar.edu), Kathy Pegion (kpegion@gmu.edu)

