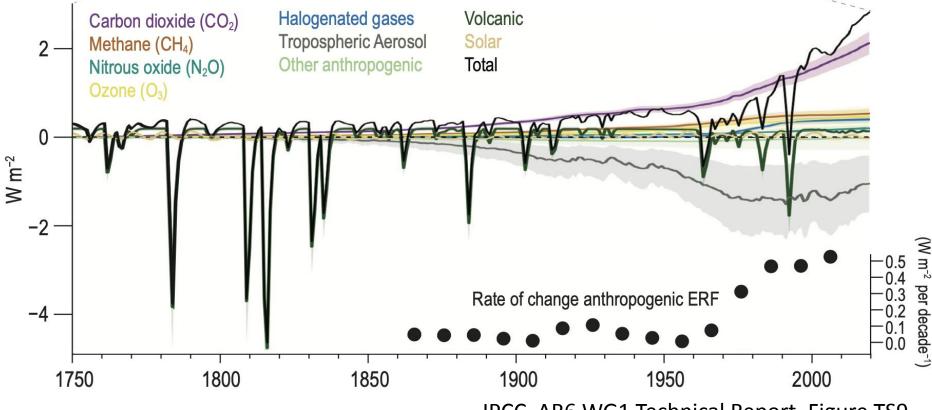
Modeling IV, Chemistry and Aerosols presented by Simone Tilmes, ACOM

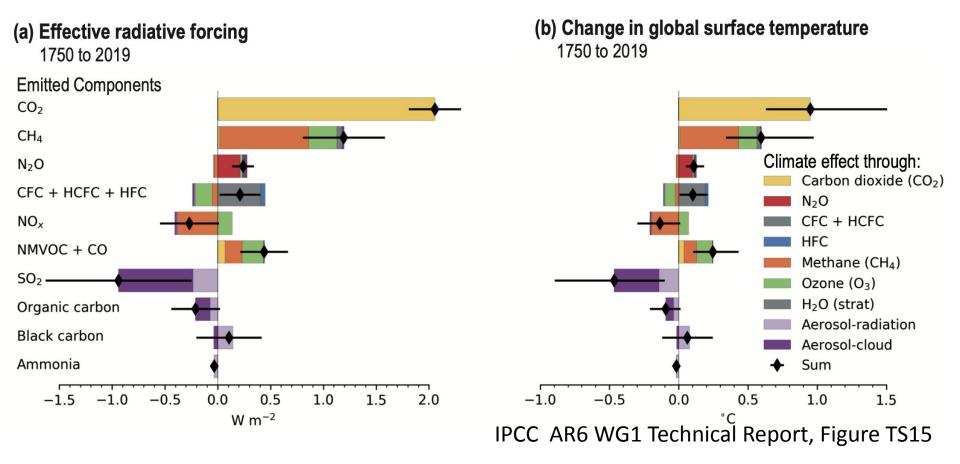
Chemistry-Climate Working Group (CCWG)

- Chemistry-Climate WG Co-Chairs: Simone Tilmes, Rafael Fernandez
- Software Engineers: Francis Vitt
- CAMChem Liaison: Rebecca Buchholz



Importance of Chemistry and Aerosols for Climate

(d) The increase in effective radiative forcing (ERF) since the late 19th century is driven predominantly by warming GHGs and cooling aerosol. ERF is changing at a faster rate since the 1970s


IPCC AR6 WG1 Technical Report, Figure TS9

Chemistry and aerosols interact with the climate system, -> need to be well describe in climate models

JCAR

Importance of Chemistry and Aerosols for Climate

- Importance of describing ozone and aerosol precursors
- Importance of aerosol-cloud interactions in models

Importance of Chemistry and Aerosols for Air Quality

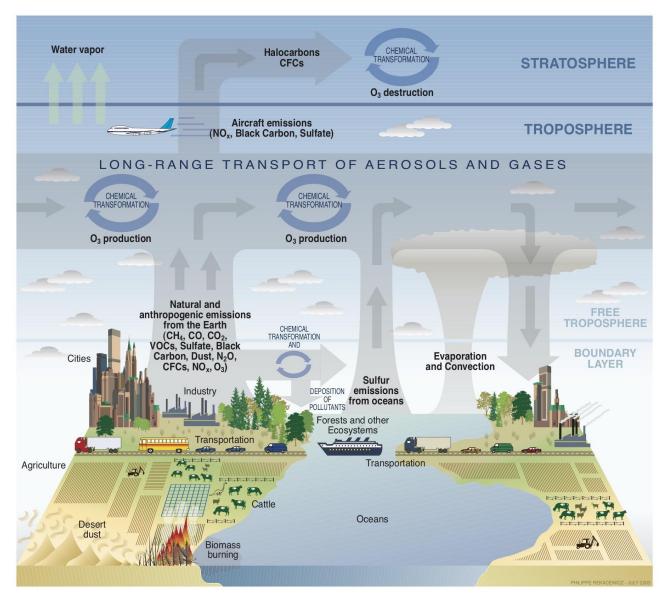
Ozone pollution (NOx, CO, VOC, CH4):

- Traffic / Industry (use of fossil fuels)
- Private (use of fossil fuels)
- Farmland

-> Ozone can damage the tissues of the respiratory tract, causing inflammation and irritation, and result in symptoms such as coughing, chest tightness and worsening of asthma symptoms

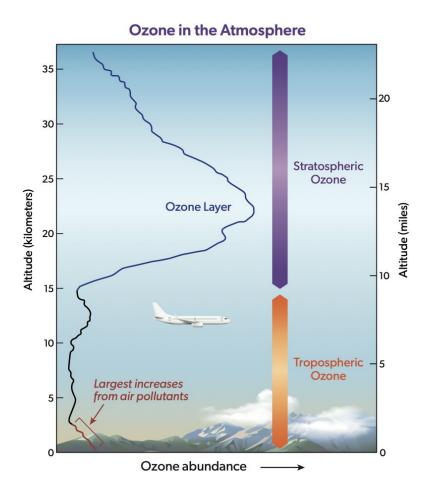
Particle Matter Pollution pm2.5 and pm10: particle diameter less than 2.5 or 10 micrometer (SO2, VOC, NH3, BC, OC, fine dust)

- Traffic /Industry (use of fossil fuels)
- Farmland
- Fires (worsen with climate change)
- Dust storms (worsen with climate change)
- Volcanoes


Exposure to such particles can affect both your lungs and your heart, premature deaths, especially for people with heart or lung diseases

(7+ million premature deaths due to air pollution per year !!)

Simulation of Atmospheric Composition



NSF

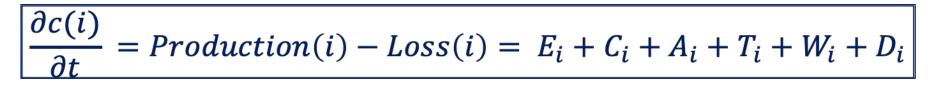
CESM Tutorial 2023, Chemistry / Aerosols

NCAR

Simulation of Stratospheric Ozone

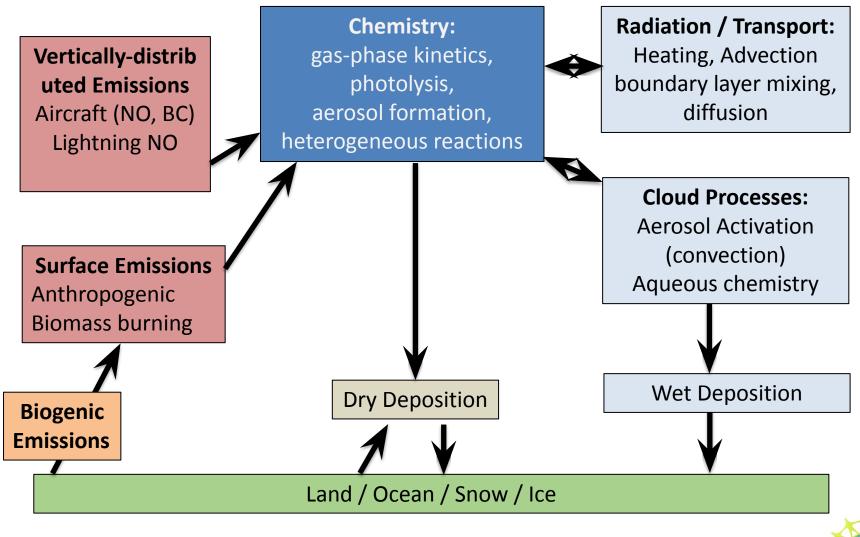
UV Protection by the Stratospheric Ozone Layer

UV-C (very dangerous) mostly filtered out by ozone UV-B only partially filtered by ozone.


UV-B and UV_{ERY} changes are directly related to skin cancer and cataract

 Societal impacts, Effect terrestrial and aquatic systems, Impact on tropospheric chemistry, Vitamin D production

Solution for each Chemical Species *i*



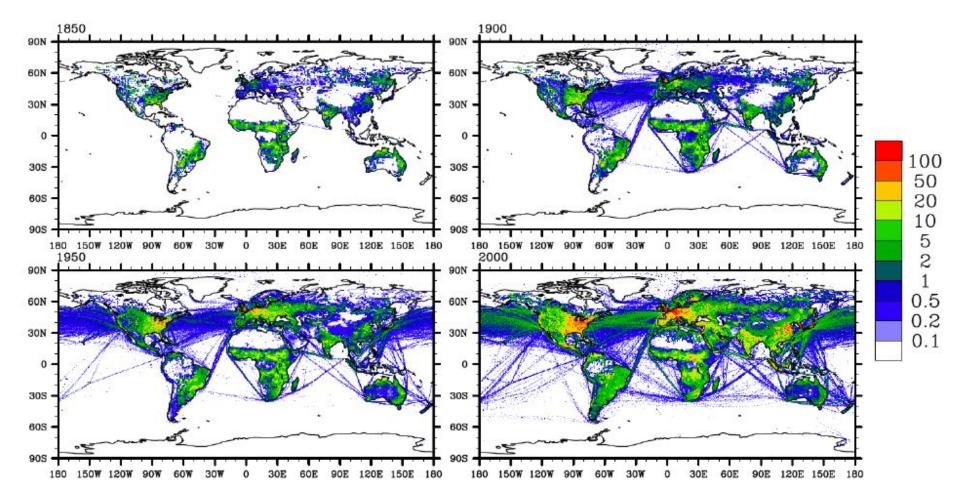
- For each compound, at each timestep, the change in concentration is the sum of the change in concentration for each process:
 - $-E_i$: Emissions
 - C_i : Gas-phase-Chemistry
 - A_i : Aerosol-processes (Gas-aerosol exchange, het chem.)
 - $-T_i$: Advection + Diffusion
 - W_i : Cloud-processes (wet deposition)
 - D_i : Dry deposition
- For compounds with short lifetimes the order of operators can affect results

Lifecyle of Atmospheric Constituencies

Chemistry-Climate Components in CESM2

- Surface emissions and concentrations
- Chemical mechanism
- Aerosol model and cloud interactions
- Dry Deposition
- Wet Deposition

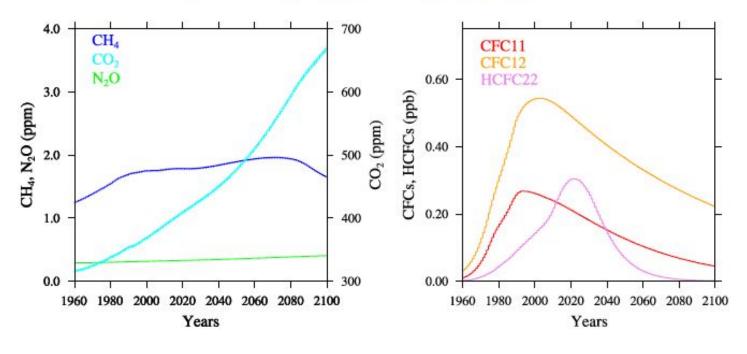
Chemistry-Climate Components in CESM2


Surface emissions and concentrations

- Emissions
 - Surface emissions: anthropogenic, biogenic, biomass burning, ocean, soil
 - Vertical emissions (external forcings): aircraft, volcanoes, power plants
- Surface concentrations
 - Lower boundary conditions (greenhouse gases, long-lived gases)

Example of NOx Surface Emissions

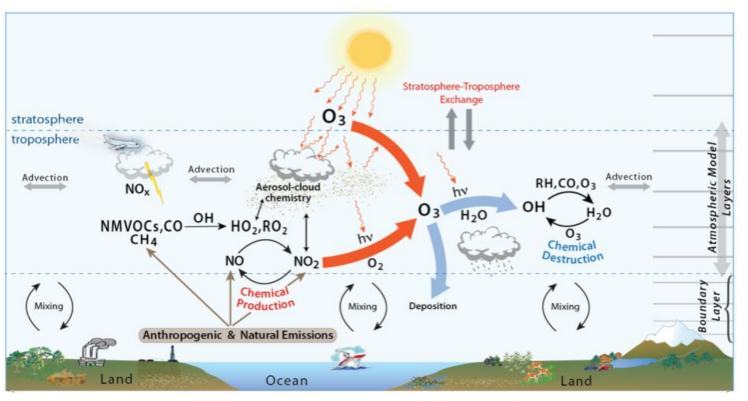
Lamarque et al., 2010


Anthropogenic + biomass burning + ships: kg(N)/year

Example of Lower Boundary Conditions

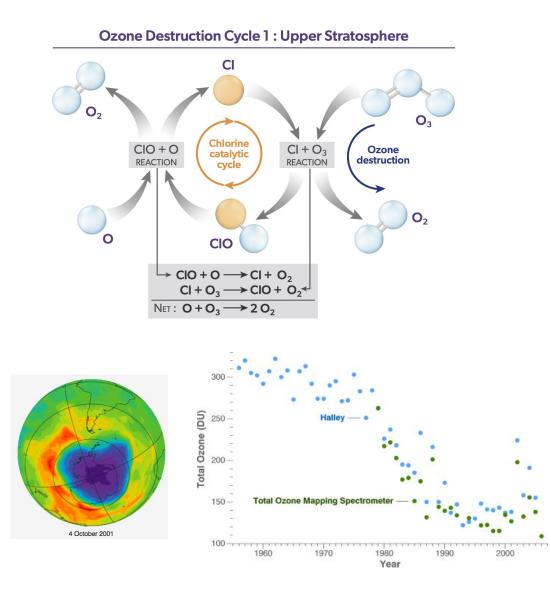
- Greenhouse gases are prescribed as monthly fields of CO₂, CH₄, O₃, N₂O, CFCs) through lower boundary conditions. All CFCs can be combined to effective CFC emissions.
- Can vary with latitude

Lower Boundary Conditions, RCP6.0


Chemistry-Climate Components in CESM2

- Surface emissions and concentrations
- Chemical mechanism
- Aerosol model and cloud interactions
- Dry Deposition
- Wet Deposition

Tropospheric Chemistry in CESM



- Photo-chemistry
- Gas-phase chemistry
- Heterogeneous chemistry
- Aqueous phase chemistry,
- Gas-to-aerosol Exchange

Young et al., 2017

Stratospheric Chemistry in CESM

Ozone Destruction Cycles 2 and 3 : Polar Regions WMO2022

CYCLE 2: $CIO + CIO \rightarrow (CIO)_{2}$ $(CIO)_{2} + sunlight \rightarrow CIOO + CI$ $CIOO \rightarrow CI + O_{2}$ $2(CI + O_{3} \rightarrow CIO + O_{2})$ NET: $2O_{3} \rightarrow 3O_{2}$

CYCLE 3: $CIO + BrO \rightarrow CI + Br + O_{2}$ or $\begin{pmatrix} CIO + BrO \rightarrow BrCI + O_{2} \\ BrCI + sunlight \rightarrow CI + Br \end{pmatrix}$ $CI + O_{3} \rightarrow CIO + O_{2}$ $Br + O_{3} \rightarrow BrO + O_{2}$ NET: 2O₃ \rightarrow 3O₂

Comprehensive Stratospheric Chemistry

- Heterogeneous reactions
- Catalytic Cycles

Available Chemical Mechanisms

Mechanism (pre-processor code)	Model: Chemistry Description	#Species	#Reactions
TSMLT1 (pp_waccm_tsmlt_mam4)	WACCM: Troposphere, stratosphere, mesosphere, and lower thermosphere	231 solution, 2 invariant	583 (433 kinetic, 150 photolysis)
TS1 (pp_trop_strat_mam4_vbs)	CAM-chem: Troposphere and stratosphere	221 solution, 3 invariant	528 (405 kinetic, 123 photolysis)
MA (pp_waccm_ma_mam4)	WACCM: Middle atmosphere (stratosphere, mesosphere, and lower thermosphere)	98 solution, 2 invariant	298 (207 kinetic, 91 photolysis)
MAD (pp_waccm_mad_mam4)	WACCM: Middle atmosphere plus D-region ion chemistry	135 solution, 2 invariant	593 (489 kinetic, 104 photolysis)
SC (pp_waccm_sc_mam4)	WACCM: Specified chemistry	29 solution, 8 invariant	12 (11 kinetic, 1 photolysis)
CAM	CAM: Aerosol chemistry	25 solution, 7 invariant	7 (6 kinetic, 1 photolysis)

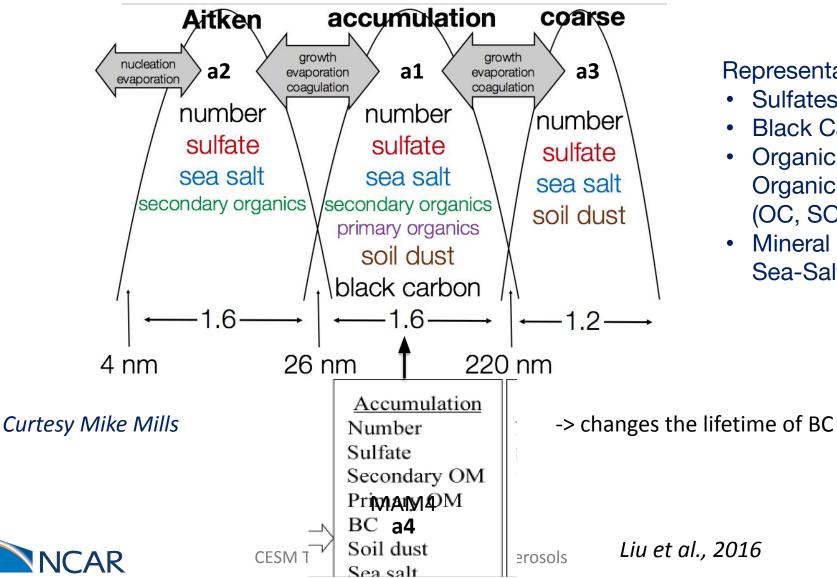
CAM6 vs CAM-chem

Same atmosphere, physics, resolution Different chemistry and aerosols -> emissions and coupling

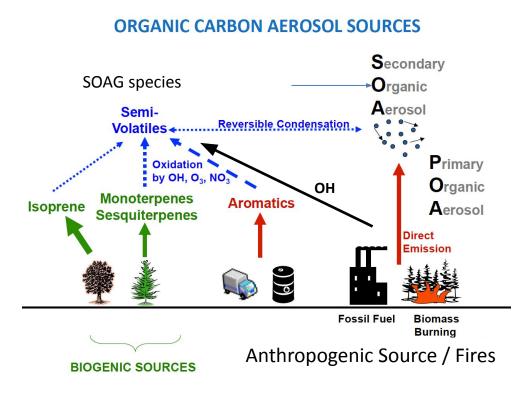
CAM6: Aerosols are calculated, using simple chemistry ("fixed" oxidants) (prescribed: N₂, O₂, H₂O, O₃, OH, NO₃, HO₂; chemically active: H₂O₂, H₂SO₄, SO₂, DMS, SOAG)

Limited interactions between Chemistry and Climate

- -> prescribed fields have to be derived using chemistryclimate simulations
- Prescribed ozone is used for radiative calculations
- Prescribed oxidants is used for aerosol formation
- Prescribed methane oxidation rates
- Prescribed stratospheric aerosols
- Prescribed nitrogen deposition
- Simplified secondary organic aerosol description


Chemistry-Climate Components in CESM2

- Surface emissions and concentrations
- Chemical mechanism
- Aerosol model and cloud interactions
- Dry Deposition
- Wet Deposition


Default Modal Aerosol Model (MAM)

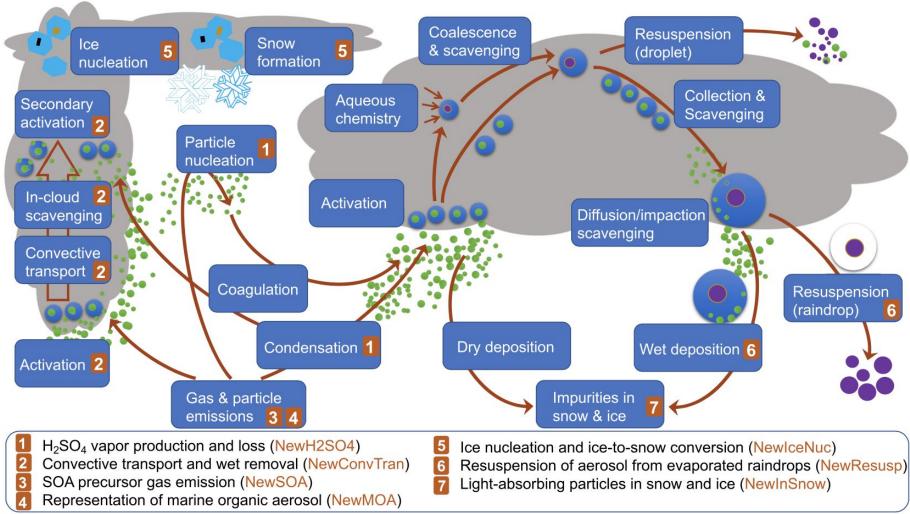
Representation of

- Sulfates, Black Carbon
- Organic Carbon, **Organic Matter** (OC, SOA),
- Mineral Dust and Sea-Salt

Secondary Organic Aerosol Description in WACCM and CAM-chem

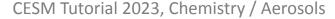
Modified after C. Heald, MIT Cambridge

Simplified Chemistry (CAM6):


- SOAG (oxygenated VOCs) derived from fixed mass yields
- no interactions with land

Comprehensive Chemistry:

- SOAG formation derived from VOCs using Volatility Bin Set (VBS) description
- 5 volatility bins
- Interactive with land emissions
- -> more physical approach

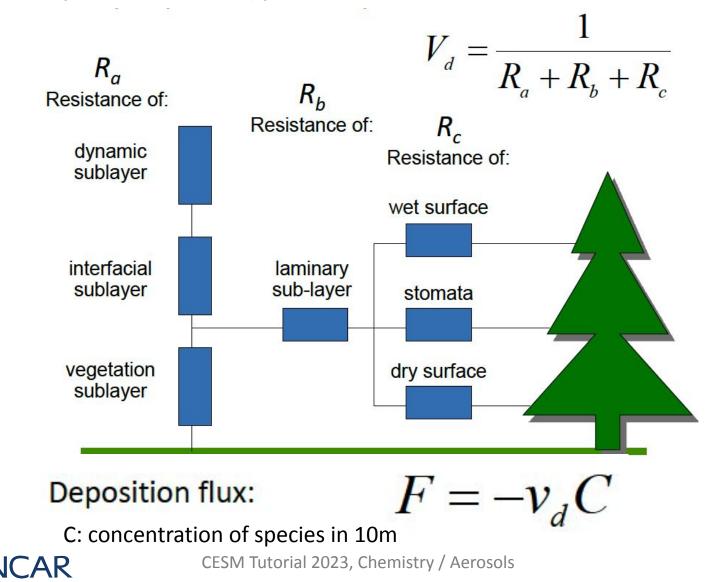


Aerosol – Cloud Interactions

E3SM: Wang et al., 2020 (JAMES)

NCAR

Chemistry-Climate Components in CESM2


- Surface emissions and concentrations
- Chemical mechanism
- Aerosol model and cloud interactions
- Dry Deposition
- Wet Deposition

Dry Deposition Velocity Calculation

Dry Deposition: uptake of chemical constituents by plants and soil (CLM), depending on land type, roughness of surface, based on resistance approach

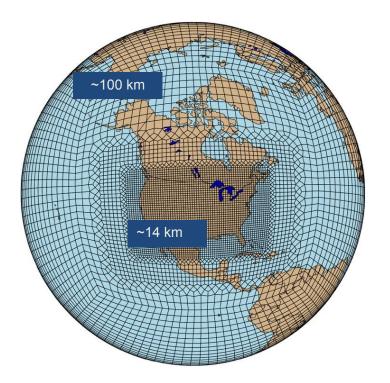
Wet Deposition

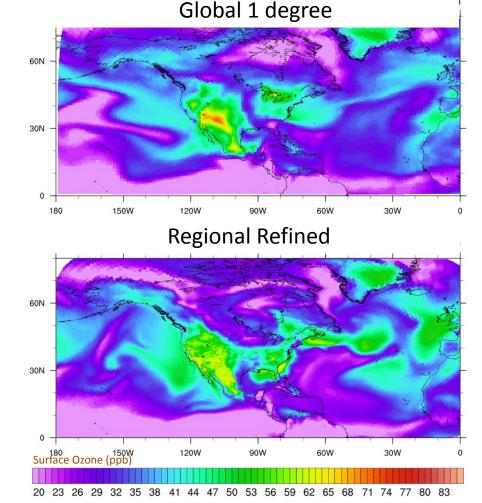
Wet Deposition: uptake of chemical constituents in rain or ice (linked to precipitation, both large-scale and convective).

- Removal is modeled as a simple first-order loss process
- X_{iscav} is the species mass (in kg) of Xi scavenged in time
- F is the fraction of the grid box from which tracer is being removed, and λ is the loss rate.

$$X_{iscav} = X_i \times F \times (1 - \exp(-\lambda \Delta t))$$

CAM-cam (MUSICA-V0) Applications for Air quality


MUSICA-V0: Multi-Scale Infrastructure for Chemistry and Aerosols


CAM-chem-SE-RR - Community Atmosphere Model with Chemistry With Spectral Element (SE) dynamical core and Regional Refinement (RR)

MUSICA-wiki: tutorials and support https://wiki.ucar.edu/display/MUSICA

Regional refinement for U.S. Air Quality

 Exposure Relevant scales and Large scale feedbacks on and of air quality

User Support for CAM-Chem and WACCM

Advanced Changes	 Updating Gas-phase Chemistry (including kinetics, deposition, aerosol uptake, etc.) Tagging CO and simple tracers CAM-chem with regional refinement: <i>MUSICA</i> Physics-based nudging - creating regridded reanalyses (on model levels)
Model Component Descriptions	 Wet Deposition Dry Deposition Gas-phase Chemistry Emission Inventories HEMCO NEW! Aerosols Data Assimilation
Online Interactive Emissions	 Biogenic Emissions from CLM-MEGAN Online Air-Sea Interface for Soluble Species (OASISS) Ammonia
Use and Diagnostics	 Boundary conditions for regional modeling Automated CESM diagnostic package Using CAM-chem output
User Community	 Current Users/Projects Contributions to Model Intercomparisons (MIPs) CAM-chem Forum Chemistry-Climate Working Group Publications CAM-chem Publications from NCAR CESM Publications
Other links and documents	 Recent Bug Fixes CAM Documentation (User and Scientific Guides) ACOM CAM-chem page CESM Chemistry Climate Working Group Join the CESM Chemistry WG mailing list Benchmarks and Production Experiment Diagnostics

CGD Forum: http://bb.cgd.ucar.edu/

Simone Tilmes CAM-Chem co-chair tilmes@ucar.edu (303) 497-1425

Rebecca Buchholz CAM-Chem Liaison buchholz@ucar.edu (303) 497-1492

https://wiki.ucar.edu/display /camchem/Home

https://wiki.ucar.edu/display /MUSICA/MUSICA+version+0

