Evaluating Climate Variability in Models: Challenges and Tools

Clara Deser Climate Analysis Section, NCAR

CESM Tutorial, 13 July 2023

Evaluating Climate Variability in Models: Challenges and Tools

Biggest challenges (in my view)
Limited sampling due to short data records.
Removal of the evolving forced climate change signal.

Evaluating Climate Variability in Models: Challenges and Tools

Biggest challenges (in my view)

Limited sampling due to short data records.

□ Removal of the evolving forced climate change signal.

New Tools

 Large Ensembles of simulations with a given model and forcing protocol.

 NCAR Climate Variability Diagnostics Package for Large Ensembles.

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude

Free-running or partially constrained (e.g. "Pacemaker" protocol)

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude

Free-running or partially constrained (e.g. "Pacemaker" protocol)

Salient Features

- Large ensemble size (30-100 simulations).
- **Different** initial conditions for each simulation.
- Same forcing protocol for each simulation

(e.g., emissions scenario or Pacemaker constraint).

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude

Free-running or partially constrained (e.g. "Pacemaker" protocol)

Salient Features

- Large ensemble size (30-100 simulations).
- **Different** initial conditions for each simulation.
- **Same** forcing protocol for each simulation

(e.g., emissions scenario or Pacemaker constraint).

Each simulation follows a different random
 sequence of internally-generated variability,
 superimposed upon a common forced response
 (after memory of the initial conditions is lost).

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude

Free-running or partially constrained (e.g. "Pacemaker" protocol)

Salient Features

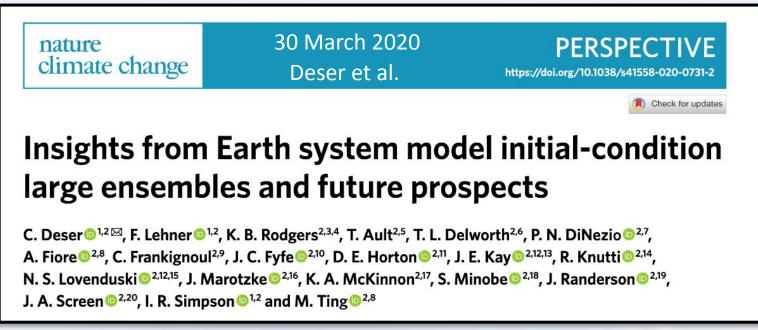
- **Large** ensemble size (30-100 simulations).
- Different initial conditions for each simulation.
- Same forcing protocol for each simulation (e.g., emissions scenario or Pacemaker constraint).

Each simulation follows a different random
 sequence of internally-generated variability,
 superimposed upon a common forced response
 (after memory of the initial conditions is lost).

Forced response (t) \approx ensemble mean (t) Internal variability (t) in each simulation \approx deviation from ensemble mean (t)

CMIP 5/6 Models Global, Coupled

Spatial resolution ~ 1-2° latitude/longitude


Free-running or partially constrained (e.g. "Pacemaker" protocol) Lots of samples of internal variability for robust estimation of the evolving characteristics of the forced response on local and regional scales in a given model.

Forced response:

- 1) Background climate change;
- 2) Changes in variability and extremes.

Forced response (t) \approx ensemble mean (t) Internal variability (t) in each simulation \approx deviation from ensemble mean (t)

US CLIVAR Working Group on Large Ensembles

What are they? Why are they useful? How large do they need to be? How are they best designed? Emerging applications and future directions?

MULTI-MODEL LARGE ENSEMBLE ARCHIVE

US CLIVAR Working Group on Large Ensembles (credit to Flavio Lehner)

> CMIP5 and CMIP6 model output

https://www.cesm.ucar.edu/community-projects/mmlea

MULTI-MODEL LARGE ENSEMBLE ARCHIVE

US CLIVAR Working Group on Large Ensembles (credit to Flavio Lehner)

> CMIP5 and CMIP6 model output

Expansion to 16 models and 11 variables coming soon! (credit to Nicola Maher)

https://www.cesm.ucar.edu/community-projects/mmlea

Two Examples

ENSO Teleconnections NAO

Two Examples

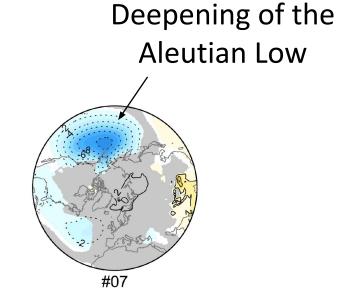
ENSO Teleconnections

"How well do we know them and how do we evaluate models accordingly?"

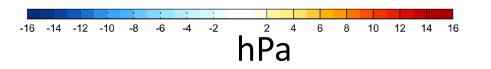
Deser et al. 2017 and 2018, Journal of Climate.

ENSO Teleconnections

CESM1 "Tropical Pacific Pacemaker" Ensemble (Run by the CESM Climate Variability and Change Working Group)

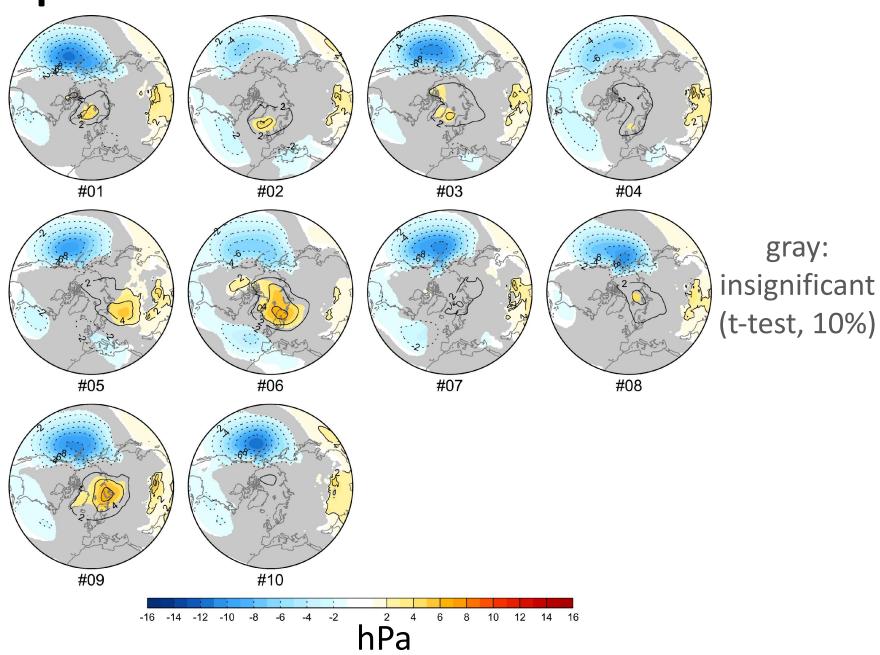

10 realizations for 1920-2013 under historical radiative forcing; SST anomalies in the Tropical Pacific nudged to the observed evolution.

DJF SLP Composite

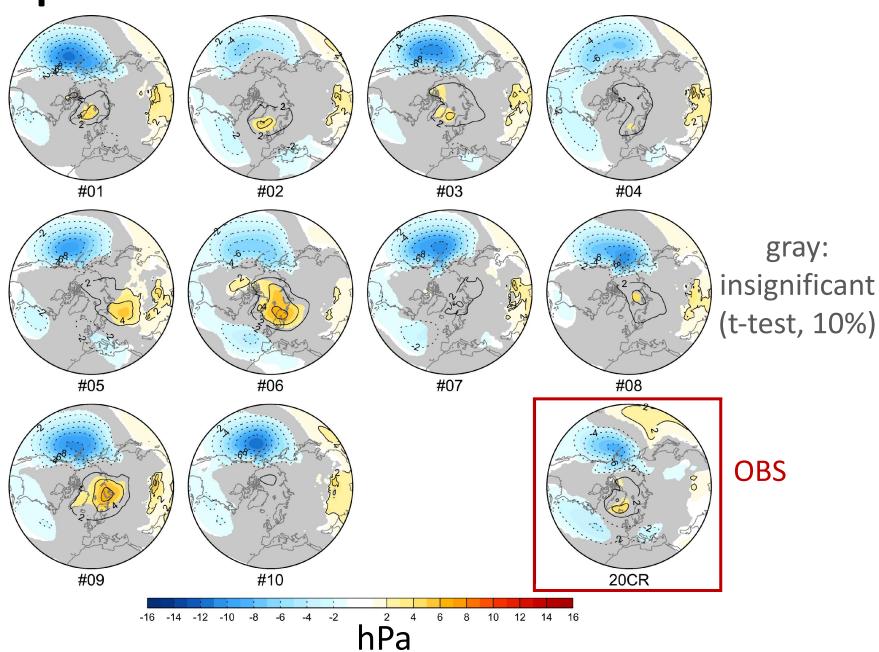

18 El Nino minus 14 La Nina events (1920-2013)

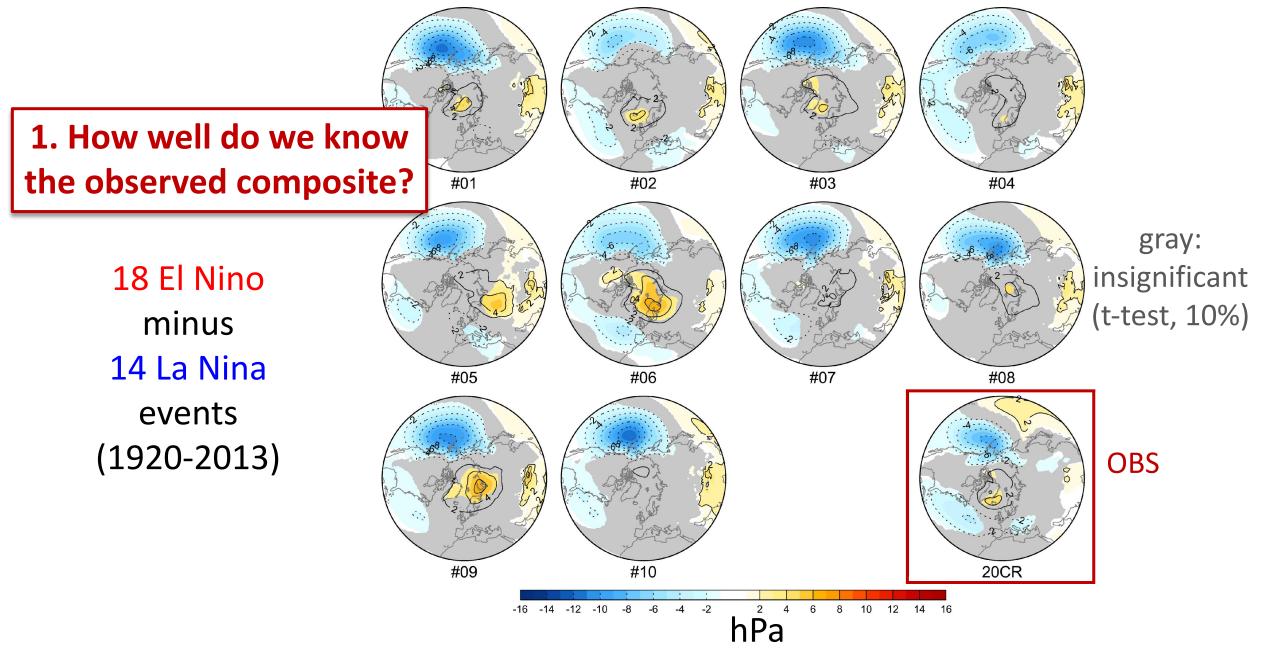
DJF SLP Composite

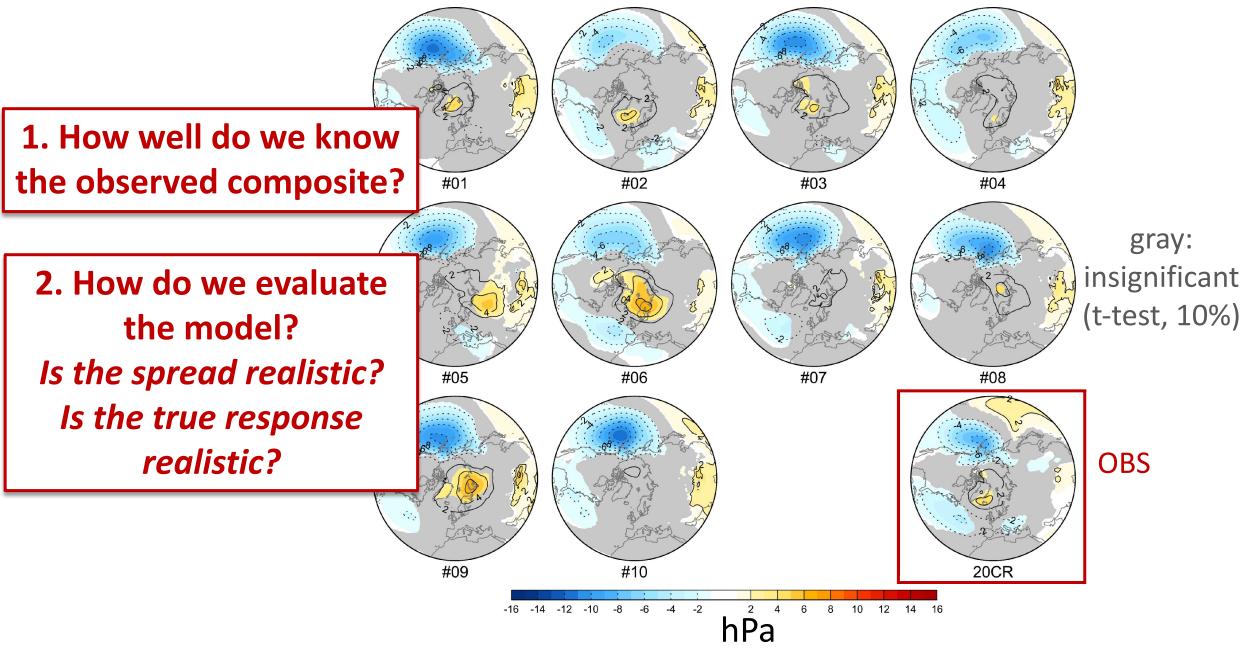
18 El Nino minus 14 La Nina events (1920-2013)


gray: insignificant (t-test, 10%)

Deepening of the DJF SLP **Aleutian Low** Composite gray: insignificant 18 El Nino (t-test, 10%) minus 14 La Nina #07 #06 NAO-like events response (1920-2013)


DJF SLP Composite

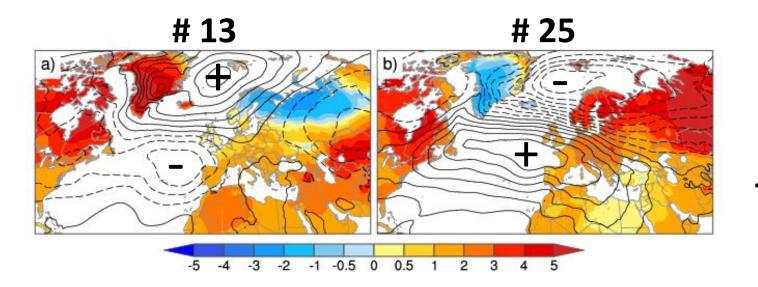

18 El Nino minus 14 La Nina events (1920-2013)



DJF SLP Composite

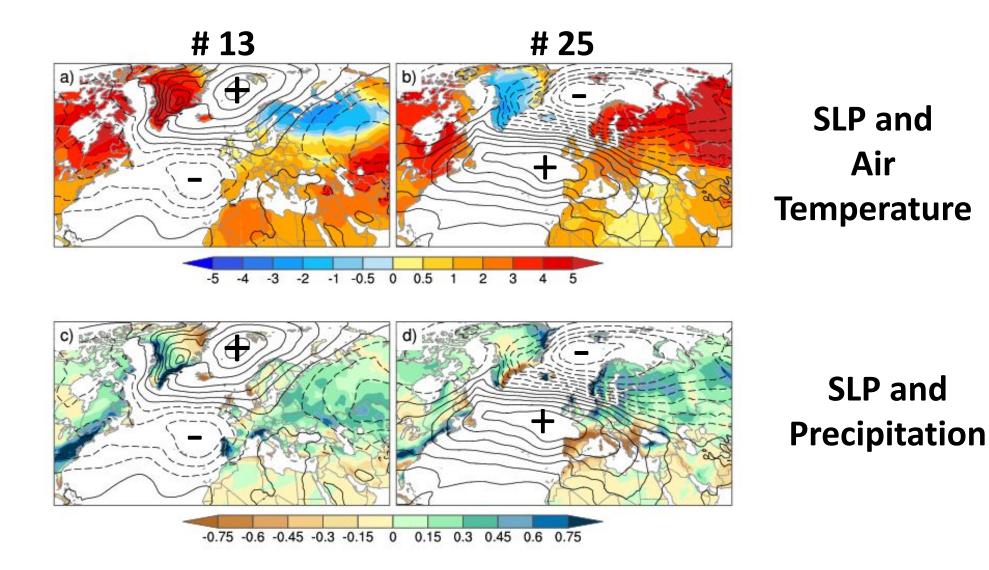
18 El Nino minus 14 La Nina events (1920-2013)

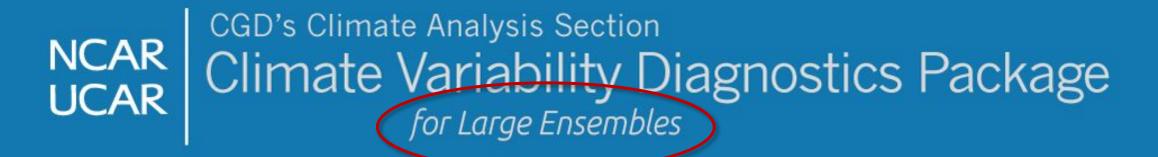
Two Examples



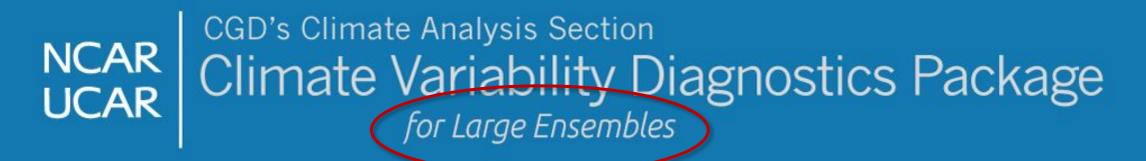
"The Role of the North Atlantic Oscillation in European Climate Projections"

Deser et al. 2017, Climate Dynamics.


CESM1 Large Ensemble (Kay, Deser et al. 2015) 40 members, 1920-2100 historical + RCP8.5 forcing


CESM1 Projected Trends over the next 30 years

SLP and Air Temperature

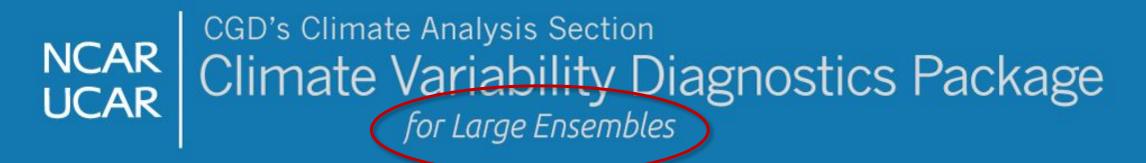

CESM1 Projected Trends over the next 30 years

https://www.cesm.ucar.edu/projects/cvdp-le

An automated analysis tool and data repository for exploring forced and internal components of climate variability and change.

https://www.cesm.ucar.edu/projects/cvdp-le

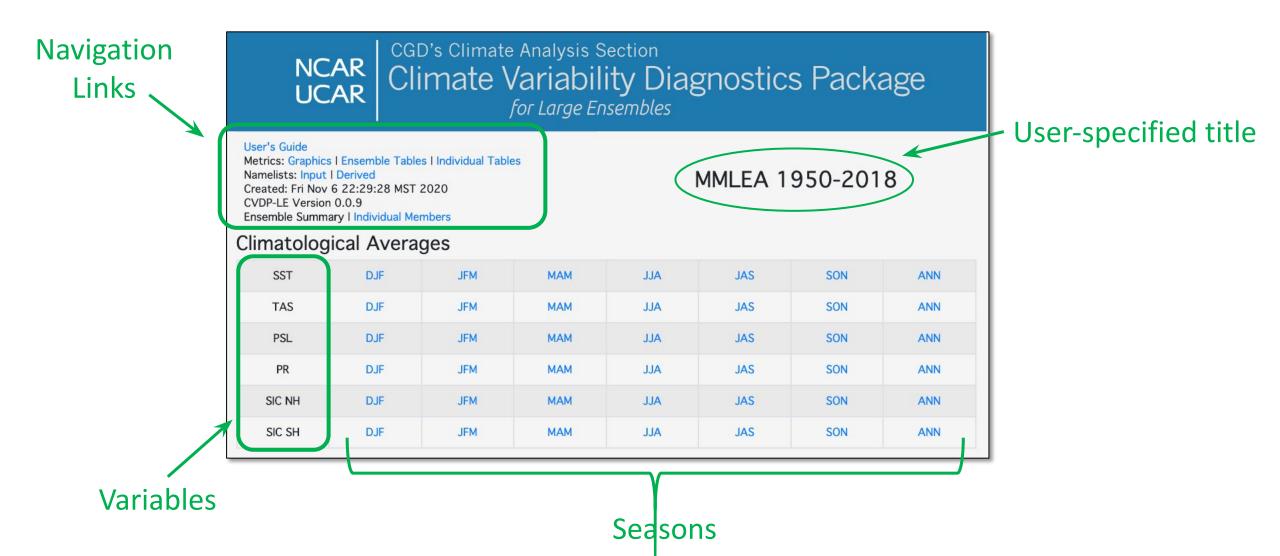
- How well does a given model simulate the mean state, long-term trends, and modes of variability such as ENSO, NAO, AMV, PDV?
- How do models compare with each other? Are there true structural differences?
- How does climate change affect internal variability?
- What are the relative contributions of internal variability and forced climate change to long-term trends?


NCAR UCAR UCAR Climate Variability Diagnostics Package for Large Ensembles

https://www.cesm.ucar.edu/projects/cvdp-le

- How well does a given model simulate the mean state, long-term trends, and modes of variability such as ENSO, NAO, AMV, PDV?
- How do models compare with each other? Are there true structural differences?
- How does climate change affect internal variability?
- What are the relative contributions of internal variability and forced climate change to long-term trends?

Null hypothesis for any apparent model bias, model difference, and model-projected change in variability should be "sampling fluctuations" (i.e., inadequate


sampling).

https://www.cesm.ucar.edu/projects/cvdp-le

- Computes modes of variability, trends, and climate indices.
- Provides ensemble-mean and ensemble-spread metrics for each model.
- Quantitative comparison to observations (*via* rank metrics).
- Comprehensive User's Guide.
- User specifies the data sets and time periods (models & observations).
- All output saved to a data repository for later use.

Diagnostics Overview

NC. UC.	ar Cii Ar			ity Diag	gnostic	s Packa	age
Namelists: Input I Created: Mon Nov CVDP-LE Version	Derived 9 14:29:53 MST		S	ľ	MMLEA 1	950-20	18
Climatologi	ical Avera	ges					
357	DUE	JFM	MAM	JJA	JAS	SON	ANN
TAS	DJF	JFM	MAM	JJA	JAS	SON	ANN
PSL	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PR	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	мам	JJA	JAS	SON	ANN
SIC SH	DJF	JFM	MAM	JJA	JAS	SON	ANN
Standard D	eviations						
сст	DJF	JFM	MAM	JJA	JAS	SON	ANN
TAS	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PSL	DJF	JFM	MAM	JJA	JAS	SON	ANN
PR	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	MAM	JJA	JAS	SON	ANN
SIC SH	DJF	JFM	MAM	JJA	JAS	SON	ANN
Global Trer	nd Maps						
T22	DIF	JFM	MAM	JJA	JAS	SON	ANN
TAS	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PSL	DJF	JFM	МАМ	JJA	JAS	SON	ANN
PR	DJF	JFM	МАМ	JJA	JAS	SON	ANN
SIC NH	DJF	JFM	МАМ	JJA	JAS	SON	ANN
SIC SH	DJF	JFM	МАМ	JJA	JAS	SON	ANN

NCAR UCAR CGD's Climate Analysis Section Climate Variability Diagnostics Package for Large Ensembles

Namelists: Input Created: Mon No	v 9 14:29:53 MST		I Tables	MMLEA 195	50-2018	
CVDP-LE Versior Ensemble Summ	n 0.0.9 ary I Individual Men	nbers	Coupled N	lodes of Variability		
Climatolog	ical Averag	ges	ENSO	Spatial Composites	El Niño - La Niña	El Niño - La Niña
SST	DJF	JFN			SST/TAS/PSL JJA ⁰ SON ⁰ DJF ¹ MAM ¹	PR JJA ⁰ SON ⁰ DJF ¹ MAM ¹
TAS	DJF	JFN			El Niño SST/TAS/PSL JJA ⁰ SON ⁰ DJF ¹ MAM ¹	El Niño PR JJA ⁰ SON ⁰ DJF ¹ MAM ¹
PR	DJF	JFN			La Niña SST/TAS/PSL	La Niña PR
SIC NH	DJF	JFN			JJA ⁰ SON ⁰ DJF ¹ MAM ¹	JJA ⁰ SON ⁰ DJF ¹ MAM ¹
SIC SH	DJF	JFN			El Niño Hovmöller	La Niña Hovmöller
Standard [Deviations			Niño3.4	Timeseries	Monthly Std. Dev.
SST	DJF	JFN			Power Spectra	Wavelet
TAS	DJF	JFN		Autocorrelation		Running Standard Deviation
PSL	DJF	JFN	AMV	Regr: SST TAS PR	Timeseries	Power Spectra
PR SIC NH	DJF	JFN		Regr LP: SST TAS PR	Timeseries	
SIC NH	DJF	JFN	AMV'	Regr: SST TAS PR	Timeseries	Power Spectra
Global Tre	nd Maps			Regr LP: SST TAS PR	Timeseries	
SST	DJF	JFN	PDV	Regr: SST TAS PR	Timeseries	Power Spectra
TAS	DJF	JFN	PDV'	Regr: SST TAS PR	Timeseries	Power Spectra
PSL	DJF	JFN	AMOC	Means	Standard Deviations	Patterns
PR	DJF	JFN		Timeseries	SST/TA	S Regressions
SIC NH	DJF	JFN		Spectra	AMV/AMO0	C Lag Correlations
SIC SH	DJF	JFN			0.000	no en la companya de

User's Guide

SIC NH

SIC SH

DJF

DJF

JFN

JFI

Namelists: Input Created: Mon No	ov 9 14:29:53 MST		Tables	MMLE	A 1950-2018	3						
CVDP-LE Versior Ensemble Summ	n 0.0.9 ary I Individual Men	nbers	Coupled Mo	des of Variab	ariability							
Climatolog	ical Avera	ges	ENSO Atmospheric Modes of Variability									
SST	DJF	JFN		SO	Patterns	DJF	JFM	MAM	JJA	JAS	SON	
TAS	DJF	JFN		30								
PSL	DJF	JFN			Timeseries	DJF	JFM	MAM	JJA	JAS	SON	
PR	DJF	JFN		NAM	Patterns	DJF	JFM	MAM	JJA	JAS	SON	
SIC NH	DJF	JFN			Timeseries	DJF	JFM	MAM	JJA	JAS	SON	
SIC SH	DJF	JFN		NAO	Patterns	DJF	JFM	MAM	JJA	JAS	SON	
Standard [Deviations				Timeseries	DJF	JFM	МАМ	JJA	JAS	SON	
SST	DJF	JFN		SAM	Patterns	DJF	JFM	MAM	JJA	JAS	SON	
TAS	DJF	JFN			Timesentes		IEM		114			
PSL	DJF	JFN	AMV		Timeseries	DJF	JFM	MAM	JJA	JAS	SON	
PR	DJF	JFN		PNA	Patterns	DJF	JFM	MAM	ALL	JAS	SON	
SIC NH	DJF	JFN		_	Timeseries	DJF	JFM	MAM	JJA	JAS	SON	
SIC SH	DJF	JFN	AMV'	NPO	Patterns	DJF	JFM	МАМ	JJA	JAS	SON	
Global Tre	nd Maps				Timeseries	DJF	JFM	МАМ	JJA	JAS	SON	
SST	DJF	JFN	PDV	PSA1	Patterns	DJF	JFM	MAM	JJA	JAS	SON	
TAS	DJF	JFN	PDV'			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100						
PSL	DJF	JFN	AMOC		Timeseries	DJF	JFM	MAM	JJA	JAS	SON	
PR	DJF	JFN		PSA2	Patterns	DJF	JFM	MAM	JJA	JAS	SON	

Timeseries

DJF

JFM

MAM

JJA

JAS

SON

ANN

JF

JFI

JFI

JFI

JE

User's Guide

Metrics: Graphics | Ensemble Tables | Individual Tables

Namelists: Input | Derived Created: Mon Nov 9 14:29:53 MST 2020

CVDP-LE Version 0.0.9

Ensemble Summary | Individual Members

Climatolog	ical Avera	ges
SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN

Standard Deviations

TAS

PSL

PR

SIC NH

SIC SH

SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN
Global Tren	id Maps	
SST	DJF	JFN

DJF

DJF

DJF

DJF

DJF

ENSO	Atmosphe	ric Modes	of Variabili	ty					
	SO	Patterns	DJF	JFM	JFM MAM	JJA	JAS	SON	ANN
		Timesenes	DJF	JFM	MAM	JJA	JAS	SON	ANN
	NAM	Global Time	eseries						
		551	DJF	JFM	MAM	JJA	JAS	SOM	N ANN
	NAO	TAS	DJF	JFM	MAM	JJA	JAS	SOM	N ANN
		PR	DJF	JFM	MAM	JJA	JAS	SOM	N ANN
	SAM	PR (land-only)	DJF	JFM	MAM	ALL	JAS	SON	N ANN
AMV	F	Regional Ti	meseries)					
	PNA	Atlantic 33T Mer Mode	idional Atlan	tic Niño SST	North Atla	antic SST	Tropical North SST	Atlantic	Tropical South Atlanti SST
AMV'	NPO	NPO niño1+2 SST North Pacific PSL Index (NPI)		niño3 SST niño3.4 SST			niño4 SST		
				dex (NPI) North Pacific SST Meridional Mode				South Pacific SST Meridional Mode	
PDV	PSA1	Indian (Ocean SST Dipole	Tropical Indian Ocean SST			Southern Ocean SST		
		Timeserie	s DJF	JFM	MAM	JJA	JAS	SON	ANN
PDV'		Patterns	DJF	JFM	MAM	JJA	JAS	SON	ANN
PDV'	PSA2	Fatterns							

ENSO

AMV

AMV'

PDV

PDV'

AMOC

JFN

JFN

JFI

JFI

JF

JF

Coupled Modes of Variability

User's Guide

Metrics: Graphics | Ensemble Tables | Individual Tables

Namelists: Input I Derived Created: Mon Nov 9 14:29:53 MST 2020 CVDP-LE Version 0.0.9 MMLEA 1950-2018

Climatological Averages

 SST
 DJF

TASDJFJFNPSLDJFJFNPRDJFJFNSIC NHDJFJFNSIC SHDJFJFN

Standard Deviations

SST

TAS

PSL

PR

SIC NH

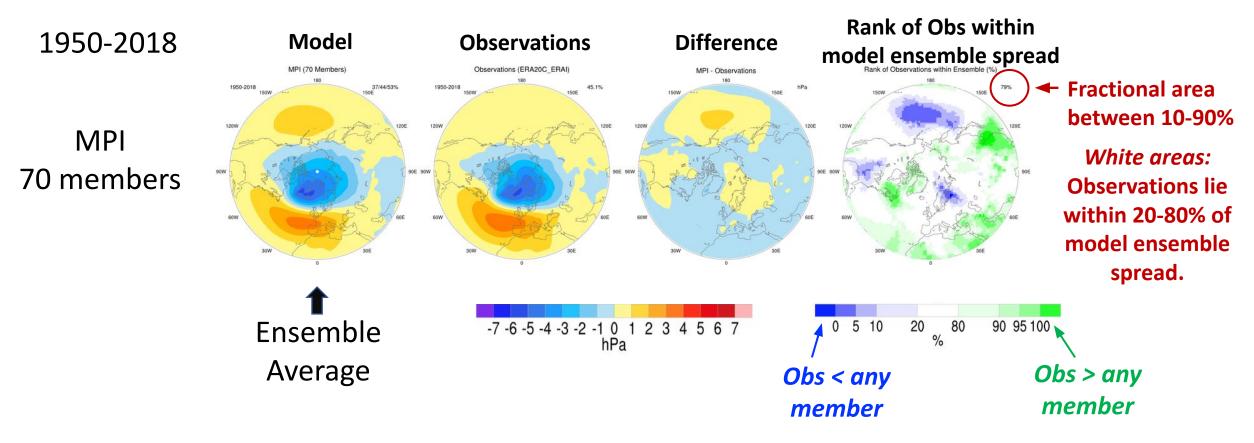
SIC SH

SST	DJF	JFN
TAS	DJF	JFN
PSL	DJF	JFN
PR	DJF	JFN
SIC NH	DJF	JFN
SIC SH	DJF	JFN

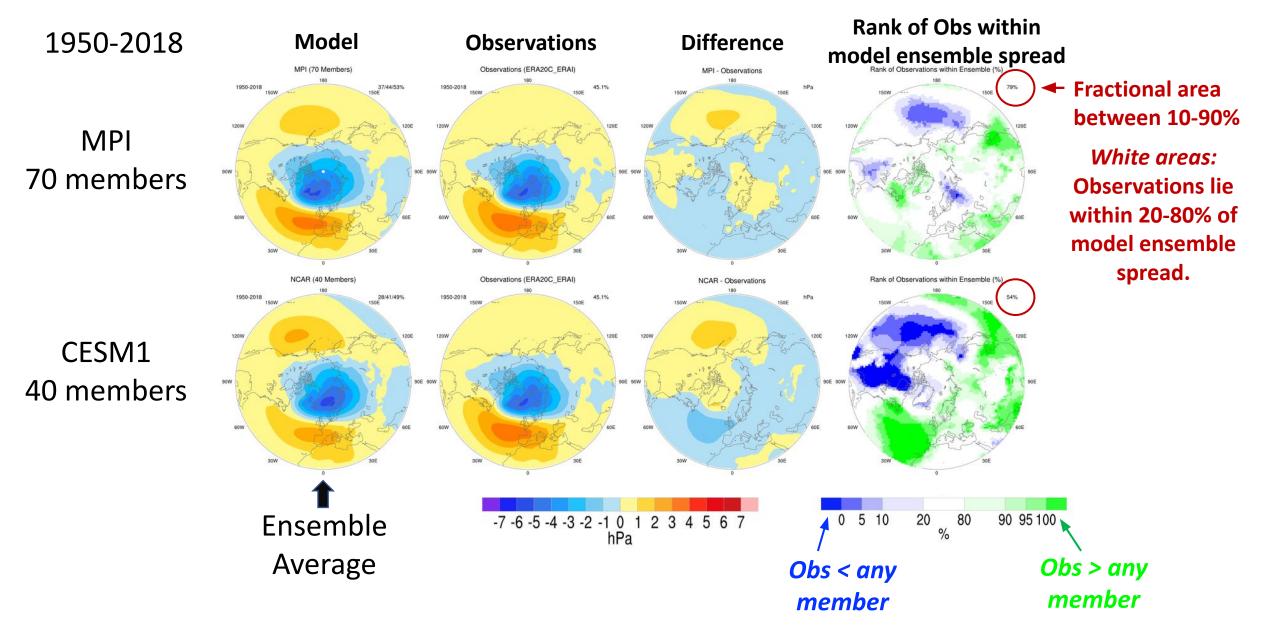
DJF

DJF

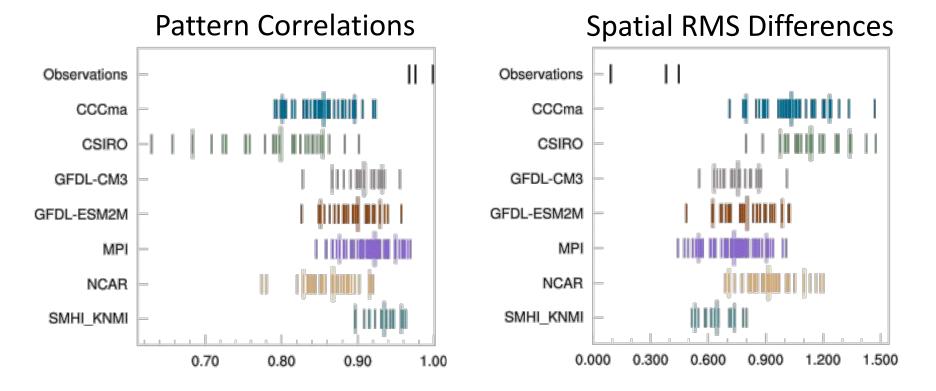
DJF


DJF

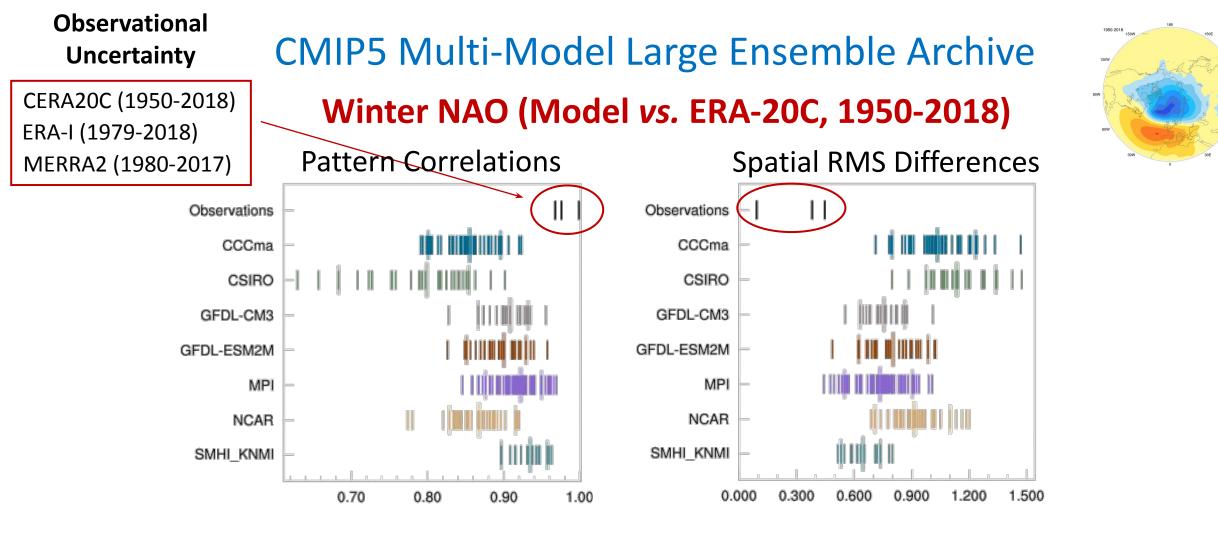
DJF


DJF

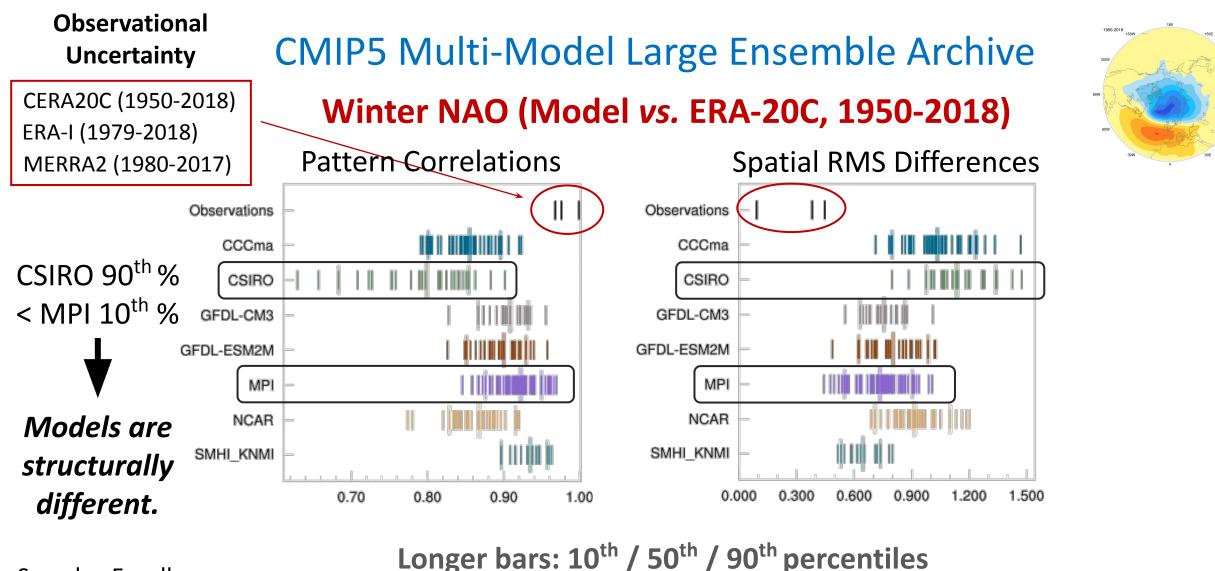
-	heric Modes o		-	19872		14.0	CON	V ANNO 1				
SO	Patterns	DJ	IF JFM	MAM	JJA	JAS	SON	ANN				
	Timeseries	DJ	IF JFM	MAM	JJA	JAS	SON	ANN				
AM	Global Timeseries											
	SST	DJF	JFM	MAM	JJA	JAS	SON	ANN				
AO	TAS	DJF	JFM	MAM	JJA	JAS	SON	ANN				
	PR	DJF	JFM	MAM	JJA	JAS	SON	ANN				
AM	PR (land-only)	DJF	JFM	МАМ	JJA	JAS	SON	I ANN				
	Regional Tim	neseries										
NA			tlantic Niño SST	North Atl	antic SST	Tropical North Atlantic Trop SST		Fropical South Atlantic SST				
IPO	niño1-2	Sea Ic	e Extent 1	Timeseries					I			
	North Pacifi	ic NH	DJI J	MAM	JJA	JAS		SON	ANN			
SA1	Indian Oc	cea	Feb N	Mar Sep	Oct	Monthly	М	onthly Anomalies	Climatology			
	Timeseries	SH	DJF J	FM MAM	JJA	JAS		SON	ANN			
SA2	Patterns		Feb N	Mar Sep	Oct	Monthly	М	onthly Anomalies	Climatology			
	Timeseries	DJ	IF JFM	MAM	JJA	JAS	SON	ANN				

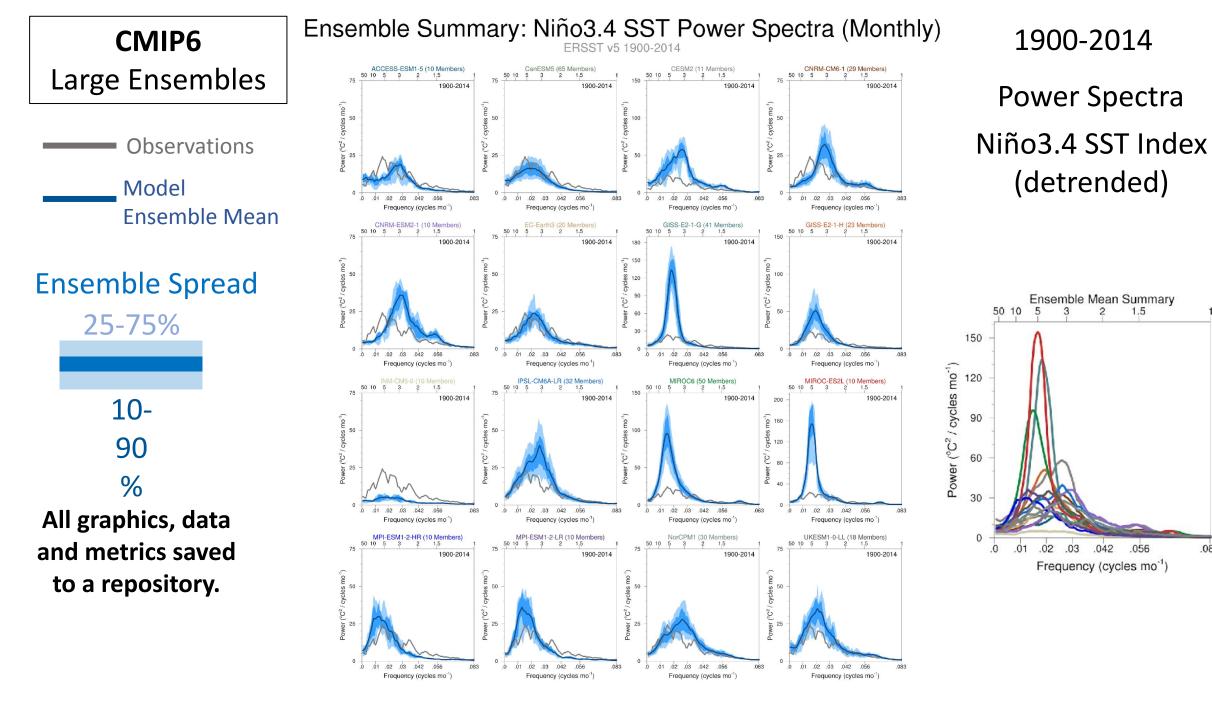

Ensemble Summary: NAO Pattern (DJF)

Ensemble Summary: NAO Pattern (DJF)


CMIP5 Multi-Model Large Ensemble Archive Winter NAO (Model vs. ERA-20C, 1950-2018)

Longer bars: 10th / 50th / 90th percentiles


All graphics, data and metrics saved to a repository.


Longer bars: 10th / 50th / 90th percentiles

All graphics, data and metrics saved to a repository.

See also Fasullo et al. (2020)

All graphics, data and metrics saved to a repository.

1.5

.056

.083

CGD's Climate Analysis Section Climate Variability Diagnostics Package for Large Ensembles

Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE)

The Climate Variability Diagnostics Package for Large Ensembles (CVDP-LE) developed by NCAR's Climate Analysis Section is an automated analysis tool and data repository for exploring internal and forced contributions to climate variability and change in coupled model "initial-condition" Large Ensembles and observations.

The package computes a wide range of modes of interannual-to-multidecadal variability in the atmosphere, ocean and cryosphere, as well as long-term trends and key indices of global and regional climate. Diagnostics include the ensemble-mean (i.e., forced response) and ensemble-spread (i.e., internal variability) of each model, as well as quantitative metrics comparing the models to observations. All diagnostics and metrics are saved to a data repository for later use and analysis.

The CVDP-LE User's Guide provides general background on initial-condition Large Ensembles, detailed documentation of all diagnostics and metrics in the package, and guidance on interpreting the results. Instructions for downloading and running the CVDP-LE are provided on the Code page and readme file, respectively.

The CVDP-LE can be applied to any suite of observational data, model simulations and time periods specified by the user. A few examples of CVDP-LE applications to the Multi-Model Large Ensemble Archive and the CMIP6 archive are linked below; additional comparisons are in the Data Repository.

- MMLEA 1950-2018
- MMLEA 2019-2099
- CMIP6 Historical 1900-2014

When presenting results from the CVDP-LE in either oral or written form, please cite:

Phillips, A. S., C. Deser, J Fasullo, D. P. Schneider and I. R. Simpson, 2020: Assessing Climate Variability and Change in Model Large Ensembles: A User's Guide to the "Climate Variability Diagnostics Package for Large Ensembles", doi:10.5065/h7c7-f961

We welcome your feedback and suggestions on any aspect of the CVDP-LE.

CVDP collaborators: Adam Phillips (software lead), Clara Deser (science lead), John Fasullo, Isla Simpson, and Dave Schneider, as well as other members of NCAR's Climate Analysis Section.

CVDP-LE Current Version: 1.0.0
Home
News
Code
User's Guide
Data Repository
Observations
Support/Contact Us
Known Issues
CVCWG INFORMATION Simulations
Activities Update (March 2020)
Upcoming Meetings
Past Meetings
Published Data
Climate Variability Diagnostics Package
Climate Data Guide
Multi-Model Large Ensemble Archive
CVCWG COMMUNICATION Email: CVCWG Members
Subscribe to CVCWG List

Some Application Ideas (User's Guide)

- Multiple time periods to see if modes of variability change with time.
- Subsets of ensemble members to assess robustness.
- Filter the data to investigate dependence on time scale.
- Use an "ensemble" of shorter segments from a control simulation.

Resources for Studying Climate variability and Change

https://climatedataguide.ucar.edu/

ARCHIVE

Multi-Model Large Ensemble Archive

CGD's Climate Analysis Section NCAR UCAR **Climate Variability Diagnostics Package** for Large Ensembles

https://www.cesm.ucar.edu/projects/cvdp-le

https://www.cesm.ucar.edu/community-projects/mmlea

Extra Slides

NCAR UCAR Climate Variability Diagnostics Package for Large Ensembles

Tutorial and teaching resource

User's Guide (35 pages)

- Background on internal climate variability
- Utility of Large Ensembles
- Diagnostics and metrics (fully referenced)
- Treatment of observational uncertainty
- Two views: Ensemble Summary vs. Individual Members
- Interpretation of plots and metrics
- Best practices and tips for applying the package

Lots of random variability, which means it is essential to have a large number of samples for robust assessment.

Null hypothesis for any apparent *model bias in variability* and any apparent *change in variability* due to radiative forcing (e.g.,solar, GHG, volcanoes ...) should be "sampling fluctuations".