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New Tools 
� Large Ensembles of simulations with a given model 

and forcing protocol. 
� NCAR Climate Variability Diagnostics Package for 

Large Ensembles.
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Lots of samples of internal variability for 
robust estimation of the evolving 

characteristics of the forced response on 
local and regional scales in a given model.  

   Forced response: 
1) Background climate change;
2) Changes in variability and extremes.



US CLIVAR Working Group on Large Ensembles

30 March 2020
Deser et al. 

Single Model Initial-condition Large Ensembles (SMILES)

What are they?  Why are they useful? 
How large do they need to be? 
How are they best designed?
Emerging applications and future directions?
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CMIP5 and CMIP6 
model output

https://www.cesm.ucar.edu/community-projects/mmlea

US CLIVAR Working Group on Large Ensembles 
(credit to Flavio Lehner)

Expansion to 16 
models and 11 

variables 
coming soon! 
(credit to Nicola 

Maher)



Two Examples

ENSO Teleconnections
NAO



Two Examples

ENSO Teleconnections

“How well do we know them and 
how do we evaluate models accordingly?”

Deser et al. 2017 and 2018, Journal of Climate.



Two Examples

ENSO Teleconnections

CESM1 “Tropical Pacific Pacemaker” Ensemble 
(Run by the CESM Climate Variability and Change Working Group) 

10 realizations for 1920-2013 under historical radiative forcing; 
SST anomalies in the Tropical Pacific nudged to the observed evolution.



OBS

hPa

+

Deepening of the 
Aleutian Low

NAO-like 
response gray: 

insignificant
(t-test, 10%)

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

CESM1 “Tropical Pacific Pacemaker” Ensemble



OBS

hPa

+

Deepening of the 
Aleutian Low

NAO-like 
response

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



OBS

hPa

+

Deepening of the 
Aleutian Low

NAO-like 
response

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



OBS

hPa

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



hPa

OBS

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



hPa

OBS

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

1. How well do we know 
the observed composite?

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



hPa

OBS

DJF SLP 
Composite                   

18 El Nino  
minus  

14 La Nina 
events

(1920-2013)

1. How well do we know 
the observed composite?

2. How do we evaluate 
the model?

Is the spread realistic?
Is the true response 

realistic?

CESM1 “Tropical Pacific Pacemaker” Ensemble

gray: 
insignificant
(t-test, 10%)



Two Examples

NAO

“The Role of the North Atlantic Oscillation in 
European Climate Projections”

Deser et al. 2017, Climate Dynamics.

CESM1 Large Ensemble (Kay, Deser et al. 2015) 
40 members, 1920-2100 historical + RCP8.5 forcing
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An automated analysis tool and 
data repository for exploring 

forced and internal components 
of climate variability and change.

https://www.cesm.ucar.edu/projects/cvdp-le
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Are there true structural differences?
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Null hypothesis for any 
apparent model bias, 
model difference, and 

model-projected change  
in variability should be 
“sampling fluctuations” 

(i.e., inadequate 
sampling).



https://www.cesm.ucar.edu/projects/cvdp-le

• Computes modes of variability, trends, and climate indices.
• Provides ensemble-mean and ensemble-spread metrics for each model.
• Quantitative comparison to observations (via rank metrics).
• Comprehensive User’s Guide. 
• User specifies the data sets and time periods (models & observations).

• All output saved to a data repository for later use.



Diagnostics Overview

Variables

User-specified title

Seasons

Navigation 
Links
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CMIP5 Multi-Model Large Ensemble Archive
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CMIP5 Multi-Model Large Ensemble Archive
CERA20C (1950-2018)

ERA-I (1979-2018)

MERRA2 (1980-2017)

CSIRO 90th % 
< MPI 10th %

Models are 
structurally 
different. 

All graphics, data and metrics saved to a repository. 

Winter NAO (Model vs. ERA-20C, 1950-2018)
Pattern Correlations Spatial RMS Differences

Observational 
Uncertainty

Longer bars: 10th / 50th / 90th percentiles
See also Fasullo 

et al. (2020)



10-
90
%

25-75%
Ensemble Spread

Observations

Model           
Ensemble Mean

CMIP6
Large Ensembles

Power Spectra

Niño3.4 SST Index
(detrended)

All graphics, data 
and metrics saved 

to a repository. 

1900-2014



• Multiple time periods to 
see if modes of variability 
change with time.

Some Application Ideas
(User’s Guide)

• Subsets of ensemble 
members to assess 
robustness.

• Filter the data to 
investigate dependence 
on time scale.

• Use an “ensemble” of 
shorter segments from a 
control simulation.



https://climatedataguide.ucar.edu/

https://www.cesm.ucar.edu/projects/cvdp-le

Resources for Studying Climate variability and Change

https://www.cesm.ucar.edu/community-projects/mmlea



Extra Slides



User’s Guide (35 pages)

• Background on internal climate variability 
• Utility of Large Ensembles
• Diagnostics and metrics (fully referenced)
• Treatment of observational uncertainty
• Two views: Ensemble Summary vs. Individual Members
• Interpretation of plots and metrics
• Best practices and tips for applying the package

Tutorial and teaching resource



NPO

PNA
NAO

Annular modes

ENSO

Lots of random variability, which 
means it is essential to have a 
large number of samples for 
robust assessment.  

Null hypothesis for any apparent 
model bias in variability and any 
apparent change in variability 
due to radiative forcing 
(e.g.,solar,  GHG, volcanoes …) 
should be “sampling 
fluctuations”.


