Bhumibol reservoir, Thailand
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Dam construction lead to the creation of a new open-water body, a reservoir
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Since the 20t century, humans build 50 000 large dams worldwide
Representing 0.2 % of global land area, and 7% of total lake area

Dams build from 1900 onwards
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Humans directly interfere with the terrestrial water cycle
But Earth System models barely account for this...
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Pokhrel et al. 2016



Water management and land-atmosphere interactions: irrigation

Irrigation expansion (IRR-CROP)
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What is the impact of reservoirs on the climate?

How can

we represent reservoirs in CESM?



Representing reservoirs in Earth system models
Look at dam parametrizations in global hydrological models

Detailed, specialized and process-based Holistic, coupled framework

Community Earth System Model (CESM)

Water management Solving processes and feedbacks of

and catchment models : :
. atmosphere, ocean, land, ice and biosphere
Observation-based storage and

release policies

Community Terrestrial Systems Model (CTSM)

Land component, processes on terrestrial
ecosystems and hydrology

Global hydrological models

Generic dam parametrisations
MizuRoute

Global routing model, transports water
to the ocean through rivers and lakes



Energy [J]

Heat uptake by inland waters: lakes, rivers and reservoirs
In addition, heat is redistributed through reservoir construction
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Total inland water heat uptake is 2.57 + 3.23 x 10%° J:
~ 3.6 % of land uptake
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1e21 Heat accumulation with redistribution
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Heat redistribution by reservoir expansion: 26.8 + 2.1 x 10%° J
Exceeding heat uptake by climate change by factor ~10.4

Vanderkelen et al. 2020, GRL
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An updated lake mask for CTSM
Based on HydroLAKES and GRanD

a Reservoir grid cell area fraction
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Developments implemented in source code, dataset will be available in CTSM5.2 tag

Vanderkelen et al. 2021, JGR



Implementation of reservoir expansion in CTSM
Dynamically growing lake fraction in the grid cell

In CTSM lakes are simulated with a constant depth Reservoir expansion as growing lake fraction in the grid cell
Lake column Water Content 1 # Water Content 2
Precip Evap  Runoff
- Heat Content 1 # Heat Content 2
l I =
Constant
depth
Glacier Glacier
Crop Crop
Saturated Urban Urban
soil
Bedrock Water

correction fluxes

lT Energy

Correction fluxes are minimized with a baseline approach

Vanderkelen et al. 2021, JGR



Land only experiments: impact of transient reservoir expansion
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Coupled experiments: influence of reservoirs on climate

AMIP-style simulations
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Reservoirs dampen temperature extremes

Monthly minimum nighttime temperature
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* Reservoirs dampen the daily and seasonal T cycle and T extremes
* Responses localized to reservoir grid cells
» Substantial where reservoirs make up a large fraction

Vanderkelen et al. 2021, JGR



Streamflow regulation through dam management

Bhumibol dam, Thailand
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Implement dam management in the ESM

mizuRoute: vector-based river routing model
» Lakes and reservoirs part of river network

Mizukami et al. 2016, GMD
Mizukami et al. 2021, JAMES
Gharari et al., in review

Hanasaki et al. (2006) global dam parametrization

Irrigation vs non-irrigation reservoirs
“‘within-a-year” vs “muti-year” reservoirs
Input: purpose, mean inflow and irrigation seasonality

HRUs depending on Island Park

Island Park
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Irrigation demand per reservoir based on new irrigation topology
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MizuRoute simulations
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Inflow and runoff biases in CONUS
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» Unresolved dams upstream of river network

* Biases in catchment runoff
» Water abstraction is not included in CTSM
» Underestimation of irrigation water use upstream
 Structural biases in snowmelt dynamics

Potential solutions

CTSM parameter calibration for runoff (Cheng et al., in review)
Domestic and indust. water abstraction (Taranu et al., in prep)
Improve irrigation: different techniques (Yao et al., in review)
Representative hillslope model (Sean Swenson)

Use of higher resolution river network (e.g. MERIT-Hydro)
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Conclusions
Towards reservoirs and dams in CESM

Representation of dams and reservoirs in CESM
» Reservoir expansion in CTSM as dynamical lakes
« Dam regulation in river routing model mizuRoute

Future work
* Improvements on biases in CTSM runoff
* Coupling of mizuRoute with CTSM and CESM (ongoing)

Opening new research avenues
* Improvement the terrestrial water cycle by including human water management
« Studies on water availability, role of human water management and climate change

for adaptation and mitigation strategies.
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