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Ensemble mean (signal) = 
forced variability/change

Ensemble spread (noise) = 
internal variability
(“irreducible uncertainty”)
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Which matters more for Earth system prediction:
internal variability or forced climate change?

• Depends on spatiotemporal scale

• Accurate decadal prediction of regional 
environmental change requires 
constraining the internal component of 
variability in climate models (in addition 
to the forced component)

• As in NWP, constraining internal 
variability can be accomplished through 
initialization
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Science, 1997

J. Climate, 2010

Science, 2007

Nature, 2008

BAMS, 2009

 Laid out the scientific rationale for a 
decadal prediction protocol for CMIP5



Decadal Prediction Experiment Design
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J. Climate, 2012

Subpolar N. Atlantic Heat Content

• 10-member CCSM4-DP initialized each Jan. 1st 1961,1966,…,2006 
(N=10) from a forced ocean—sea-ice (FOSI) simulation 
constrained by historical atmospheric observations.

FOSI

DP hindcasts



J. Climate, 2012

Subpolar N. Atlantic Heat Content

• First demonstration of decadal prediction skill of CCSM hindcasts 
initialized from observation-based states

• Heat budget analysis showed that skill derives from predictable 
ocean advective heat convergence (as had been hypothesized, 
but not shown)

FOSI

DP hindcasts

After drift 
correction



Clim. Dyn., 2014

Subpolar N. Atlantic SST

• Analysis of CCSM4-DP, including extra start dates and a 
companion set initialized from ocean data assimilation 
historical “snapshots”.

• In the primary region where initialization impacts are large 
(SPNA), hindcast initialization method yields higher skill 
than data assimilation initialization method.



Clim. Dyn., 2014
Equatorial Pacific SST

• Poor skill in the tropical Pacific using FOSI initialization.



• Large initialization shock in CCSM4-DP, was later 
traced to a (correctable) bias in zonal tropical SST 
gradients in FOSI

CLIVAR Exchanges, 2017



GRL, 2015

• 10-member CESM1-DP initialized from FOSI each Jan. 1st 1955-
2014 (N=60)

• Parallel work examining N. Atlantic mechanisms in FOSI

• Predictable decadal changes in N. Atlantic ocean thermohaline 
circulation (THC) strength & northward heat transport (related to 
low-frequency NAO buoyancy forcing) translates into predictable 
changes in the rate of Arctic winter sea ice decline.  

• Rapid sea ice decline in 1990s was associated with THC spinup, 
& ongoing and future THC spindown (weak NAO forcing after 
1997) will result in a slowdown in the rate of Arctic winter sea ice 
loss.

10-year JFM Sea Ice Extent Trends

FOSI



2005-2015

GRL, 2015

FOSI

10-year JFM Sea Ice Extent Trends10-year Observed Trends extended through 2011-2021



GRL, 2014

Nat. Geosci., 2016

GRL, 2014

npj Clim. Atm. Sci., 2018

• S2D prediction systems exhibit 
deficient signal variability (too much 
noise)



The signal-to-noise paradox (in a nutshell)
• The inherent predictability of Earth’s climate ( �𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡) is not known.

• However, initialized forecasts verified against observations provide a lower bound estimate of real-world 
predictability limits (ACC <= �𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡).

• The inherent predictability of model climate can be quantified from forecast ensembles ( �
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 ).

• Large ensemble climate forecast systems show that model-world predictability is often significantly lower 
than real-world predictability.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝐴𝐴

�
𝜎𝜎𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓

= 𝐴𝐴𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆𝑆

 Large ensembles needed to achieve skill (beat down excessive model noise)

Significant potential to improve/extend predictions by improving coupled model fidelity

Signal-to-noise paradox
when RPC > 1
(model predicts real-world 
better than it predicts itself)



• 40-member CESM1.1-DPLE initialized each Nov. 1st 1954-2017 (N=64)

• ~26,000 sim-year experiment (CISL ASD award on Cheyenne)

• Pacific shock greatly ameliorated through improved FOSI initialization

• Direct comparison with 40-member CESM1-LE revealed widespread skill 
improvement associated with initialization (e.g., Sahel precipitation )

• Large ensemble generally improves skill and also enhances confidence in 
differentiating DPLE from LE

• One of the first DP systems to include ocean biogeochemistry

• Evidence of signal-to-noise paradox

BAMS, 2018
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Summer (JAS) Precipitation over African Sahel



• Remarkably high and long-lasting ocean prediction 
skill in SPNA region made DPLE a good system for 
exploring the mechanisms underlying Atlantic skill.

• Conventional explanation:  “AMOC”

Clim. Dyn., 2020

DPLE
FOSI



• But skill for AMOC strength declines rapidly after a 
few years

Clim. Dyn., 2020

ACC



• But skill for AMOC strength declines rapidly after a 
few years

• AMOC(𝝈𝝈) is a more relevant quantity for 
understanding decadal predictability in the N. 
Atlantic

• Time-lagged coupling of AMOC lower/upper limbs 
as a key decadal predictability mechanism

• Core of ocean memory resides in deep (>2 km) 
Labrador Sea Water thickness anomalies

 Lack of deep ocean observations poses a     
challenge for decadal prediction initialization

Clim. Dyn., 2020

ACC



npj Clim. Atm. Sci., 2020

RPC ~ 6

• 40-member CESM1.1-DPLE

• First study to demonstrate skillful decadal prediction of 
winter NAO & blocking frequency 

• Some evidence that weak decadal atmospheric signal 
was related to strong decadal ocean signal

• Skill is perceptible, but does not saturate, with a 40-
member ensemble



• iHESP has completed a 10-member set of DP hindcasts 
using high-resolution CESM1.3

• Can be directly compared to DPLE to isolate the impact of 
model horizontal resolution on prediction system 
performance

submitted, 2022

Texas Advanced Computing Center



submitted, 2022

• Statistically significant skill improvement in 
HRDP(10) vs. DPLE(10)

ACC:   33% of globe
MSSS:  33% of globe

• Statistically significant skill degradation in 
HRDP(10) vs. DPLE(10)

ACC:  9% of globe
MSSS:  15% of globe

FY1-5 DFJM Sea Level Pressure (SLP) Skill Maps



submitted, 2022

• Relative occurrence in units of fraction of global surface 
area of paired ACC/RPC values (note that slope gives S2T)

• Overall higher skill in HRDP

• Signal-to-noise paradox, clearly evident in DPLE(40), is 
significantly ameliorated in HRDP due to higher S2T in 
regions where ACC is high

Histograms of FY1-5 DFJM SLP Skill Metrics

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐴𝐴𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆𝑆

,    𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝑅𝑅



submitted, 2022

 Current estimates of climate predictability based on 
coarse resolution models may be overly pessimistic.

 Higher horizontal resolution improves coupled model 
fidelity (it improves prediction skill and helps to resolve 
the signal-to-noise paradox).

 Mesoscale air-sea interaction (present in HRDP but 
absent in DPLE) is a key mechanism involved in the 
transmission of predictable signals from the ocean to the 
atmosphere.

 Inclusion of ocean “noise” in a prediction system has the 
net effect of increasing signal more than noise in the 
atmosphere.

Histograms of FY1-5 DFJM SLP Skill Metrics



• We’ve come a long way in the past ~10 years. DP research has delivered more than most would have 
anticipated back in the late 2000s in terms of refining our understanding of and capacity to predict regional 
environmental change years in advance.

• CESM DP efforts have been at the forefront of many recent advances in the field (large ensembles, 
sensitivity to initialization, carbon cycle prediction, mechanistic understanding, high resolution), in large part 
due to collaborative group efforts that have built bridges between disciplines, CGD sections, funding 
streams, NCAR Laboratories, and between NCAR and the broader university community. 

• CGD/NCAR is well-positioned to continue serving as a community hub for DP research (e.g., CESM 
ESPWG).

• Advancements in DP system design have led to reappraisals of our estimation of the inherent limits of Earth 
system predictability on climate timescales. Indications are that we have not yet reached the true limits. 
More research is clearly warranted to explore the many outstanding questions (how to minimize drift & 
shock; methods to improve initialization; sensitivity to resolution; predictability mechanisms; etc.) and to 
push the frontiers of actionable Earth system prediction science.

Summary Thoughts



Thank You
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