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Introduction:

The bottom layer of the atmosphere:

Free troposphere
. Often turbulent and capped by statically L
stable air
. Small scale turbulent PBL processes as Boundary layer

well as convective updraft an down drafts
are important for mixing and vertical

transport of energy and moisture 1032 Sutace layer
« But too small to resolve for km-scale U 0
models N
— g . mean value, resolved
O0=0+10

¢ : Turbulent, not resolved
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Introduction:

Planetary boundary layer parametrization
W' = F(resolved variables; w, 0, e,...)
Examples of PBL parametrization:

8_@
0z

Eddy diffusion Stull

W' ~ —K(z) 1938

w't ~ —K(2)—+M(z)(0,.—0)) Eddy diffusion mass flux
(no entrainment!)
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Introduction:

. PBL models are substantial source of forecast inaccuracy in weather and climate

models

« Ciritical in improving forecasts of high-impact weather phenomena such as

organized severe thunderstorms Ug & - wts 0.05

1.0

v

« Inaccurate prediction of

0.6

standard approaches (e.g., ED, EDMF):

Zz*

0.4

Too simple and no entrainment.

0.2

0.0

—0.5 0.0 0.5 1.0
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Objectives:

Using machine learning to parameterize
boundary layer turbulent fluxes

« Prediction of turbulent fluxes using machine learning
« Process base flux decomposition
« Gaining insight on turbulent fluxes from machine

learning
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Data:

0.40

High resolution LES data (dry convective boundary layer)
Three simulation:

. Strongly convective (C),

. Sheared and convective (SC)

« Weakly convective and strongly sheared (S)

032
024
016
0.08

0.00

Horizontally: coarse graining, Computing mean variables and turbulent fluxes
Vertically: interpolate 100 layers between the surface and top of the BL

Input:

Output:
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Neural Network:

Two-part training:

. Reconstruction of tke — Zieo

« Prediction of turbulent fluxes using z,, . from step one
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Neural Network architecture:
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Neural Network: Tke reconstruction

D(z,.) =4
Loss: MSE(Tke,, Tkep)
Assumption: Enforced using d- Bld (2. )ik
z,.. can represents horizontal constraints in the Cortdecoder(zy,,).tke,)
and vertical part of tke loss function
separately - B, corr(decoder(z, . ).tke )
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Neural Network: Flux prediction

X € [T, Tracer,

TKE]
D(z,) =4
: z.=9,(T :
Assumption: T 9.( S) Each scalar has its own latent
All scalars are transported ——»  4s~ 9,(S) > space but the mapping is the
the same way by flow Ze = gV(Tke) same
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Overall results: Tke reconstruction
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Overall results: Flux prediction

Heat flux Tracer flux Tke flux

1000

R2 of mean: 0

Distribution 0.98 B

of R2

400

200
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Flux decomposition: Heat flux

Ug 4 - wts 0.05 Convective mode Shear mode
v I / Sheared
___ Shearedand convective
0.8
—————, Very convective
0.6
N
N
0.4
0.2
0.0
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Flux decomposition: Tracer and Tke

Tracer TKE

Convective mode Shear mode Convective mode Shear mode

2%
14 | Parameterization of turbulent fluxes (% #) C(?EUdI\ABIA ' ENGINEERIN

7% Th School of Engineerin; d Applied Science



Projection on gradient:

K using total w't’ How much of the flux is explained?
Sheared
Sheared a‘rmcﬁve\ —  Using total flux
convective —
— @00 ]
\
K wt/wt,
K using shear mode
PR i e )
| |
|
| |
: | Using second mode
: : > from decomposition
|
|
| |
: K |
bt wt/wt, !
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Summary:

Machine learning allows:

» Accurate prediction of turbulent fluxes across regimes (outperforms
standard EDMF approach) & with low dimension

» Better understanding of physics
But
* Physics guided approach is necessary for flux separation

« Two modes explain the total flux: shear related mode and convective
related mode
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