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Outline: 

 Introduction 
 Network architecture and data
 Turbulent flux parameterization 



2 | Parameterization of turbulent fluxes 

Introduction: 

:   mean value, resolved

:   Turbulent, not resolved

The bottom layer of the atmosphere:

 Often turbulent and capped by statically 
stable air

 Small scale turbulent PBL processes as 
well as convective updraft an down drafts 
are important for mixing and vertical 
transport of energy and moisture

 But too small to resolve for km-scale 
models
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Introduction: 

Examples of PBL parametrization:

Planetary boundary layer parametrization

Stull 
1988Eddy diffusion 

Eddy diffusion mass flux 
(no entrainment!) 
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Introduction: 

 PBL models are substantial source of forecast inaccuracy in weather and climate 

models

 Critical in improving forecasts of high-impact weather phenomena such as 

organized severe thunderstorms

 Inaccurate prediction of 

standard approaches (e.g., ED, EDMF):

Too simple and no entrainment.    
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Objectives: 

 Prediction of turbulent fluxes using machine learning 

 Process base flux decomposition 

 Gaining insight on turbulent fluxes from machine 

learning

Using machine learning to parameterize
boundary layer turbulent fluxes
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Data: 

Input:

Output:

High resolution LES data (dry convective boundary layer)
Three simulation:  

 Strongly convective (C),
 Sheared and convective (SC)
 Weakly convective and strongly sheared (S)

Horizontally: coarse graining, Computing mean variables and turbulent fluxes
Vertically: interpolate 100 layers between the surface and top of the BL
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Neural Network: 

Two-part training:

 Reconstruction of tke → ztke

 Prediction of turbulent fluxes using ztke from step one
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Neural Network architecture: 
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Neural Network: Tke reconstruction

D(ztke) = 4

Assumption: 
ztke can represents horizontal 
and vertical part of tke

separately

Enforced using 
constraints in the 
loss function

Loss :    MSE(Tket , Tkep)

- β1
corr(decoder(ztkew),tkew)

- β2 corr(decoder(ztkeu),tkeu)
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Neural Network: Flux prediction

D(zx) = 4

zT = gν(T) 
zS = gν(S) 
zE = gν(Tke) 

Assumption: 
All scalars are transported 
the same way by flow

Each scalar has its own latent 
space but the mapping is the 

same

X ∈ [T, Tracer, 
TKE]
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Overall results: Tke reconstruction
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Overall results: Flux prediction

R2 of mean: 
0.98
Mean of R2 : 
0.85

R2 of mean: 
0.99
Mean of R2 : 
0.32

R2 of 
mean: 
0.99an of 
R2 : 0.45

Heat flux Tracer flux Tke flux

Distribution
of R2
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Flux decomposition: Heat flux

Sheared

Sheared and convective 

Very convective

Convective mode Shear mode
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Flux decomposition: Tracer and Tke

Tracer
Convective mode Shear mode Convective mode Shear mode
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Projection on gradient:

K using total w’t’ How much of the flux is explained? 

Using total flux

Using second mode 
from decomposition

K using shear mode

K

K wt/wt0

wt/wt0

Sheared
Sheared and convective
convective
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Summary:

Machine learning allows:

• Accurate prediction of turbulent fluxes across regimes (outperforms 
standard EDMF approach) & with low dimension

• Better understanding of physics

But

• Physics guided approach is necessary for flux separation

• Two modes explain the total flux: shear related mode and convective 
related mode
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