A Large Forcing Attributed to the Variability of Biomass Burning Emissions in CESM2

Kyle Heyblom¹, Hansi Singh¹, Philip Rasch², Patricia DeRepentigny³, Haruki Hirasawa^{1,4}

¹School of Earth and Ocean Sciences, University of Victoria
²Department of Atmospheric Science, University of Washington
³Climate and Global Dynamics Laboratory, National Center for Atmospheric Research
⁴Department of Physics, University of Toronto

Photo: NASA/NOAA

CESM₂ shows rapid decline in Arctic sea ice in CMIP6 historical runs

(DeRepentigny et al., in-review at Science Advances)

Sudden increase in biomass burning (BB) emissions variability leads to surface warming in CESM2

(Fasullo et al., 2022; DeRepentigny et al., in-review; Heyblom et al. 2022) 3

Increase in BB emissions variability leads to amplified hydrologic cycle in CESM2-LE

Evaporation:

Precipitable water:

Precipitation:

40-90° N: 0.3 W m⁻² (0.8% increase)

40-90° N: 0.2 kg m⁻² (1.4% increase)

~**6% of signal** from 1950-1980 to 2070-2100 **40-90° N:** 0.01 mm day⁻¹ (0.5% increase)

(Heyblom et al. 2022, GRL) 4

How does considering variability in BB emissions affect the radiative forcing?

Idealized simulations \rightarrow

• CESM2

•

- Fixed SSTs
- Fixed sea ice concentrations
- Constant 2000's climatology

Fixed emissions (baseline)

Idealized simulations \rightarrow

• CESM2

•

- Fixed SSTs
- Fixed sea ice concentrations
- Constant 2000's climatology

Fixed emissions (baseline)

CMIP6 high variability emissions

6

Variability in BB emissions leads to a large increase in forcing over Boreal land regions

*Forcing due to CMIP6 emissions variability

<u>50-70N:</u> 1.0 W m⁻² annual mean increase <u>Globally:</u> o.1 W m⁻² annual mean increase -3.0-1.50.0 1.5 3.0

<u>Radiative Forcing Change (W m⁻²):</u>

Why do we see a change in radiative forcing?

Idealized simulations \rightarrow

- CESM2
 - Fixed SSTs
- Fixed sea ice concentrations
- Constant 2000's climatology

Fixed emissions (baseline)

CMIP6 high variability emissions

Cloud effect results in time-integrated forcing

*Using idealized emissions variability

CDNC (10⁹ m⁻²):

LWP (10⁻² kg m⁻²):

CRE (W m⁻²):

Thinner clouds

Less clouds

More SW reaching surface due to cloud differences

Cloud effect results in time-integrated forcing

*Using idealized emissions variability

CDNC (10⁹ m⁻²):

CRE (W m⁻²):

Time-integrated forcing the result of nonlinear aerosol-cloud response

Nonlinear aerosol-cloud response*

Nonlinear response in forcing

Time-integrated forcing the result of nonlinear aerosol-cloud response

Nonlinear aerosol-cloud response*

Nonlinear aerosol-cloud response

Nonlinear response in
forcing

Time-integrated forcing the result of nonlinear aerosol-cloud response Fixed Emissions (5 years)

CDNC:

Nonlinear response in Nonlinear aerosol-cloud response* forcing

Conclusions

- The variability in aerosol emissions has large impact to the aerosol radiative forcing
- Increases in variability of biomass burning emissions reduces the total negative forcing
- Increased biomass burning variability acts to warm surface and amplify hydrologic cycle – particularly in NH mid- to high latitudes
- Forcing contribution from aerosol variability is due to a nonlinear aerosolcloud response

Contact: kheyblom@uvic.ca

