

2022 CESM Workshop

Disentangling the impacts of stratospheric ozone depletion and tropospheric ozone increases on Southern Ocean interior warming

Wei Liu¹, Michaela I. Hegglin², Ramiro Checa-Garcia³, Shouwei Li¹, Nathan P. Gillett⁴, Kewei Lyu⁵, Xuebin Zhang⁵ and Neil C. Swart⁴

> ¹University of California Riverside, USA ²University of Reading, UK ³University of Natural Resources and Life Sciences, Austria ⁴Canadian Centre for Climate Modelling and Analysis, Canada ⁵CSIRO Oceans and Atmosphere, Australia

Historical ozone changes

• Stratospheric ozone depletion

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.3

-0.4

• Tropospheric ozone increases

 $\frac{O_3(1995-99) - O_3(1955-59)}{O_3(1955-59)}$

The scientific question

What are the effects of ozone changes on Southern Ocean heat uptake or interior ocean temperature change?

- The effect of stratospheric ozone depletion (e.g., Swart et al. 2018)
- The effect of tropospheric ozone increases ?

CMIP5 & CMIP6 ozone experiments

CMIP5 (strat + tropospheric ozone)

CMIP6 (stratospheric ozone)

1955-2000 trend

CMIP5: CCSM4, CESM1-CAM5, FGOALS-g2, GISS-E2-H CMIP6: CanESM5, GISS-E2-1-G, IPSL-CM6A-LR, MIROC6

- Different ozone forcing
- Different ocean warming
- Tropospheric ozone effect?
- However, different models ...

CanESM5 ozone experiments

 Southern Ocean interior warming is induced by both stratospheric ozone depletion and tropospheric ozone increases.

Ocean heat content (OHC) change

From CanESM5

- Total ozone changes contribute to 33.2% of the net historical OHC increase (0-2000 m, 30-60°S) over 1955-2000.
- 60% from tropospheric ozone increases
- 40% from stratospheric ozone depletion

From CMIP5 models

Total ozone changes contribute to $38.4 \pm 10.4\%$ of net historical OHC increase.

Physical Mechanisms

Temperature changes at depth z, i.e., ϑ'/z can be decomposed as:

$$\theta'|_z \cong \theta'|_n + N'\theta_z$$

 ϑ'/n - spiciness changes of temperature along neutral density surfaces $N'\vartheta z$ - heave changes of temperature (similar for salinity)

- Stratospheric ozone depletion -> spiciness changes of temperature
- Tropospheric ozone increases -> heave changes of temperature

Surface heat flux and zonal wind changes

- The net surface downward heat flux increases at 40-60° S due to stratospheric ozone depletion -> warming spiciness changes in isopycnal outcropping regions
- Tropospheric ozone increases -> intensified surface westerly winds in lower latitudes where the wind-driven downwelling more effectively creates warming heave changes

Conclusion

- Both stratospheric and tropospheric ozone changes have contributed to Southern Ocean interior warming during the past decades, with the latter being more important.
- The ozone changes during 1955-2000 induced about 1/3 of the net simulated ocean heat content increase in the upper 2,000 m of the Southern Ocean, with around 3/5 attributed to tropospheric increases and 2/5 to stratospheric depletion.
- Tropospheric ozone increases promote a subsurface warming in the Southern Ocean primarily via the deepening of isopycnals, while stratospheric ozone depletion causes warming via spiciness changes along isopycnals.
- Tropospheric ozone is more than an air pollutant. As a greenhouse gas, it has been pivotal to the Southern Ocean interior warming.

Thank you!

Liu, W., Hegglin, M.I., Checa-Garcia, R., Li, S., Gillett, N.P., Lyu, K., Zhang, X. and Swart, N.C., 2022. Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming. *Nature Climate Change*, *12*, 365-372.