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Ecological processes in land surface models
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Time since disturbance

FATES has variability
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Forest degradation drives emissions
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Increased productivity and altered structure
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Instances where structure is essential

ATM e Hydrodynamics (FATES-Hydro)

o Need path length, rooting depth, with size
= 3 o Need canopy position to determine
il ey atmospheric demand

/ /' Long-wave
i . Nutrlents (PARTEH)
N fixation only makes energetic sense early in
succession
o  Allometric growth necessary for nutrient
() budgets

Fire (SPITFIRE module)
o Fire impacts on canopy structure, which
affects fire behavior
o Tree-grass coexistence in fire regions is along
successional or vertical gradients

e Snow
o Snow covers short vegetation but not taller
vegetation



Plant Hydraulics
Root layers and plant-size root depth
Leaf humidity, stomata set transpiration
Mass balance at root nodes

Fire

Live fuel moisture
Crown fire

FATES

Deciduous Phenology
Forest resmence to drought

Annual Rainfall
IMERG

Nutrients User Interface

arbon/N utrient
Optimization

Tutorial in jupyter
User’s guide
Technical document
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Canopy turbulence for mixed vegetation
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Global

* Reduced Complexity modes

FATES Diagnostic testing (ILAMB)
 Land use harvest
Regional : .
» FATES captures dynamic biogeography and biomass
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Model Development Updates: Nutrient Dynamics

Ryan Knox

Core V2 Concept:

Introducing “costs” to nutrient uptake
via dynamic fine-root optimization

Carbon/Nutrient
Optimization

Less roots
Low Nutrient Uptake
Low Respiration

More roots
High Nutrient Uptake
High Respiration

U.S. DEPARTMENT OF Ofﬁce Of

7 EN ERGY Science

) NGEE-TROPICS

NPP AGB
10 A
=y 0.6 7 —
P ~
o~
£ 5
O 0.4 1 — su50-f10 o 54
> -
X —  su50-f30
) —— presNP
0.2 [ . 0 - : .
L2FR Plant N/C Store Frac.
0.7 4
0.6 - % 2: 5o
— Q
= 0.5 43 -4
=
g 2.0 -
0.4 =
0.3 1 ; : 1.5 ¢ ;
200 400 200 400
U J
N

Sensitivity experiment at Barro-
Colorado Island Panama



Model Development Updates
Yilin Fang, Junyan Ding

Comparing the default “1D” sequential
solver versus a “2D” Newton Solver

Mass Balance Equation
on Each Node
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Up to ~1000

 Variable resolution fine-root layering
» Updated pressure-volume & pressure-
conductance

cohorts per grid-

cell!

Plant size-specific rooting depth
» Leaf stomatal humidity controls on
transpiration



Representing moss as a mixture of soil and vegetation in

CTSM-FATES Hui Tang, Kjetil Aas, Sonya Geange et al.

Moss reduces diurnal cycle of soil temperature
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Annual Rainfall
¢ Represent dominance/coexistence of evergreen and
deciduous trees across rainfall gradients in the tropics

® Investigate how deciduousness may increase forest
resilience to hotter droughts.

3000 mm

Model developments
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Deciduous allocation strategy increase survivorship in dry forests
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FATES single-point simulations at NEON sites

Adrianna Foster

PFT
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Leveraging NEON aerial LiDAR
and hyperspectral imagery
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Investigating roughness and canopy height parameterizations
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Allometry and phenology important for grassland productivity and structure pgs

Xiulin Gao, Charlie Koven, Lara Kueppers
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Forest Management Practices under Future Climate with CLM-FATES

Joshua M. Rady jmrady@vt.edu
SE United States (SSP1 RCP2.6)
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Forest Management Practices under Future Climate with CLM-FATES

Joshua M. Rady jmrady@vt.edu

Vegetation Carbon (MgC/ha)

SE United States (SSP5 RCP8.5)
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Simulating environmentally sensitive tree recruitment in vegetation demographic models
Adam Hanbury-Brown, Tom Powell, Joe Wright, Helene Muller-Landau, Lara Kueppers

The Tree Recruitment Scheme (TRS) represents: 1600 ®
®
— size-dependent reproductive allocation
. . " . 525 LD_DI
— moisture- and light-sensitive seedling — B LD DT
emergence, mortality, and transition to the sapling = N B
size classes 5 172 default
— is compatible with existing VDM model g © I;iirate g
infrastructure » 57 OBS o)
2 © & ®
Result: TRS improves the magnitude and rank § 19 © 9 0
order of PFT-specific recruitment at BCl compared g
to existing VDMs (Fig 1) 6
Takeaway: TRS is well-positioned to improve
predictions of future forest functional composition 2
and distribution i i - -
N S 2= — N O 0 o
oF x E 0.3 [al= @& S
w = | m o w = [

Fig 1. Recruitment (at 1-cm dbh) for 4 PFTs at BCI (center) compared with model
predictions under 20 yr of observed meteorology (2008—2014 recycled).
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FATES code and information

https://github.com/NGEET/fates/wiki
e ... Technical Documentation
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User’'s Guide
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Tutorial materials

@

BRYNCAR  Welcome to the 2022 CTSM mini-tutorial

CTSM Mini-tutorial

The Functionally Assembled Terrestrial Ecosystem Simulator » Pages @
(FATES)

Documentation 4

This repository houses the development of the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). FATE
a numerical terrestrial ecosystem model. The funding for this project is supported by Department of Energy’s Next
Generation Ecosystem Experiment - Tropics (NGEE-T) project. The conceptual design is based off of the original
Ecosystem Demography model (ED, Moorcroft et al. 2001, Hurtt et al. 2002, Fisher et al. 2015). This model is designed so
that it works as a library that can be called from a selection of driver models including Earth System Models (ESM) such as

FATES technical documentation

FATES User's Guide

©) Jupyterook PaSERG

Search this book
The materials and notebooks in this tutorial is published as a Jupyter book here.

GETTING STARTED : . . -
This repository includes materials for the Community Terrestrial Systems Model (CTSM) Spring 2022

Tutorial 0a: CTSM, CF

mini-tutorial (link to agenda and resources)

W Tower Sites These tutorials are designed as an introduction to running the Community Terrestrial Systems Model|

(CTSM). We will go through three configurations that include running a:
GLOBAL SIMULATION

Tutarial 1a: Glodal Simulations 1. Supported NEON tower site,
suatizations 2. Global FATES-SP simulation, and
3. Generic single point simulation.

1h: Global v

GENERIC SINGLE POINT
SAVEATION We'll also fearn how to:

https://ncar.github.io/CTSM-Tutorial-2022/README.html


https://github.com/NGEET/fates/wiki
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