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PlioMIP2 and single forcing experiments

* PlioMIP2 baseline: Pliocene Model

Intercomparison Project Il
* Targeting mid-Piacenzian (3.205 Ma)

* 400 ppm CO,, mid-Pliocene boundary

conditions (Dowsett et al., 2016)
* NCAR participation with CCSM4,

CESM1.2 and CESM?2 (Feng et al., 2019,

JAMES)

* PlioMIP2 single forcing experiments with
CESM2 (Feng et al., 2022, Nat. Comm.)

* Pliocene vegetation & ice sheet changes

* Pliocene topography and bathymetry
* CO, only
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Boundary condition dependency of
temperature responses




New results from the single forcing

experiments

 Warming from 284.7 ppm
CO, to 400 ppm is 18%
greater with Pliocene
boundary conditions
compared to Pl boundary
conditions

* Translating to ~0.8K
difference in Equilibrium
Climate Sensitivity

* Notice the similarity in the
warming pattern.

TS (400 ppm — 280 ppm, K, PI) TS (400 ppm — 280 ppm, K, Pliocene)
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Dependency on boundary condition can be
explained by dependency on background warmth

* Mixed layer ocean experiments
at 1° resolution with CESM?2

* With Preindustrial boundary
conditions and ocean heat flux
5 different levels of CO, from 284.7
ppm to 590.6 ppm to reflect ~1

W/m? incremental increase of CO,
from 0 to 4 W/m?

* With Pliocene boundary conditions
and ocean heat flux
* 284.7 ppm, 400 ppm, 569.4 ppm

* Scaled to reflect incremental
increase of CO, forcing equivalent
to 1W/m?

Global mean

Warming per 1 W/m2 ~ Background mean T
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Review of the energy balance model and ECS

* Energy balance model of TOA radiative responses (ARt 4) to forcing F at a
TOA radiative imbalance N:
N=F — ARTOA

e Taylor expansion of radiative responses as a function of surface warming
(e.g., Roe et al., 2009, Ann. Rev. Ear. Pla.):

AR I
ARTOA —_ ARTOA,ATS + o4

, AT* + -

* Keep the first-order term of Taylor series:
AR7os = AR7rps AT, and N = F — AR7p 4 AT (Gregory et al., 2004, GRL)
e At equilibrium after a doubling of CO,, F = ARy, AT, ATy is the ECS.



s the first order approximation good enough
for CESM2°?

o Probably not... Forcing (W/m2) ~ warming
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* Deviations can be large y=-0.0341x% + 0.8584x . '

i ~ 3 2 - ,.0'"°°y=0.6831x
for warm climates £ . RE=0.9995 .
* With forcing at 5 W/m?, § > P
7.35K warming with the s e
linear model 1 -
* 9.15K warming with the 0.5
non-linear model 0



Potential source for the dependency on
nackground warmth

* Based on CESM?2 results, keep the second order term of the Taylor

series:
7
AR71o4

2
* Following the definition of net response parameter:

ARro4 , . ARpo,”
AT, = AMATs) = ARpos + 5

F = ARTOA ~ ARTOA’ATS —+ ATSZ

AT,

"
* For CESM?2, ARTZOA < 0, A decreases with warming. Given that F =

A(AT) AT, increasing background warmth increases climate
sensitivity.



The rise of A non-linearity

* For every W/m? linear increase of F,

calculate

* AFSUTOA: TOA reflected shortwave
* Ae: changes in planetary emissivity

¢ AFSUTOANF(ARTOA)

 decrease with increasing forcing 2
enhanced positive shortwave feedback

¢ O-TS4AE~ F(ARTOA)

0T Ae decrease with increasing
forcing 2 enhanced positive longwave

feedback

AFSUTOA (W/m?)

oTAe (W/m?2)
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Response of TOA shortwave reflection (W/m2) ~
linear forcing

y = -0.1223x2 - 1.511°8x‘
R2 = 0.9986

Emis associated longwave response (W/m2) ~ linear
forcing

y = -0.1468x2 - 2.2477x
R? = 0.9994 | |

F (W/m?)



Implications to paleoclimate

* Estimating ECS from past climate is perhaps less useful than
estimating the net response parameter
* ECS varies continuously (not just at high CO,) with background climate
warmth due to non-linearity in net response parameter

* Perhaps provides an explanation for warm climates with moderately
elevated CO,?

 Mid-Miocene? (Kurschner et al., 2008 PNAS; Rea et al., 2020 Ann. Rev. Ear.
Pla.)



Thanks for your attention!



