Boundary condition dependency of temperature responses to CO₂ forcing during the late Pliocene

> Ran Feng Assistant Professor University of Connecticut

PlioMIP2 and single forcing experiments

- PlioMIP2 baseline: Pliocene Model Intercomparison Project II
 - Targeting mid-Piacenzian (3.205 Ma)
 - 400 ppm CO₂, mid-Pliocene boundary conditions (Dowsett et al., 2016)
 - NCAR participation with CCSM4, CESM1.2 and CESM2 (Feng et al., 2019, JAMES)
- PlioMIP2 single forcing experiments with CESM2 (Feng et al., 2022, Nat. Comm.)
 - Pliocene vegetation & ice sheet changes
 - Pliocene topography and bathymetry
 - CO₂ only

JAMES Journal of Advances in Modeling Earth Systems

RESEARCH ARTICLE 10.1029/2019MS002033

Special Collection

Increased Climate Response and Earth System Sensitivity From CCSM4 to CESM2 in Mid-Pliocene Simulations

Special Section: Ran Feng¹, Bette L. Otto-Bliesner², Esther C. Brady², and Nan Rosenbloom² Community Earth System Model version 2 (CESM2)

¹Department of Geosciences, University of Connecticut, Storrs, CT, USA, ²National Center for Atmospheric Research, Boulder, CO, USA

nature communications

Explore content 🗸 About the journal 🖌 Publish with us 🗸

nature > nature communications > articles > article

Article | Open Access | Published: 14 March 2022

Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks

Ran Feng ⊠, Tripti Bhattacharya, Bette L. Otto-Bliesner, Esther C. Brady, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Ayako Abe-Ouchi, Wing-Le Chan, Masa Kageyama, Camille Contoux, Chuncheng Guo, Xiangyu Li, Gerrit Lohmann, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Zixuan Han, Charles J. R. Williams, Daniel J. Lunt, Harry J. Dowsett, Deepak Chandan & W. <u>Richard Peltier</u>

 Nature Communications
 13, Article number: 1306 (2022)
 Cite this article

 2021
 Accesses
 237
 Altmetric
 Metrics

Boundary condition dependency of temperature responses

New results from the single forcing experiments TS (400 ppm – 280 ppm, K, PI) TS

- Warming from 284.7 ppm CO₂ to 400 ppm is 18% greater with Pliocene boundary conditions compared to PI boundary conditions
- Translating to ~0.8K difference in Equilibrium Climate Sensitivity
- Notice the similarity in the warming pattern.

TS (400 ppm – 280 ppm, K, PI) TS (400 ppm – 280 ppm, K, Pliocene)

Dependency on boundary condition can be explained by dependency on background warmth

- Mixed layer ocean experiments at 1° resolution with CESM2
 - With Preindustrial boundary conditions and ocean heat flux
 - 5 different levels of CO₂ from 284.7 ppm to 590.6 ppm to reflect ~1 W/m² incremental increase of CO₂ from 0 to 4 W/m²
 - With Pliocene boundary conditions and ocean heat flux
 - 284.7 ppm, 400 ppm, 569.4 ppm
 - Scaled to reflect incremental increase of CO_2 forcing equivalent to $1W/m^2$

Background global mean T_s (K)

What causes this dependency of temperature response on background warmth?

Review of the energy balance model and ECS

• Energy balance model of TOA radiative responses (ΔR_{TOA}) to forcing F at a TOA radiative imbalance N:

$$N = F - \Delta R_{TOA}$$

- Taylor expansion of radiative responses as a function of surface warming (e.g., Roe et al., 2009, Ann. Rev. Ear. Pla.): $\Delta R_{TOA} = \Delta R_{TOA}' \Delta T_s + \frac{\Delta R_{TOA}''}{2} \Delta T_s^2 + \cdots$
- Keep the first-order term of Taylor series: $\Delta R_{TOA} \approx \Delta R_{TOA}' \Delta T_s$, and $N = F - \Delta R_{TOA}' \Delta T_s$ (Gregory et al., 2004, GRL)
- At equilibrium after a doubling of CO_2 , $F = \Delta R_{TOA}' \Delta T_s$, ΔT_s is the ECS.

Is the first order approximation good enough for CESM2?

- Probably not...
- Deviations can be large for warm climates
 - With forcing at 5 W/m², 7.35K warming with the linear model
 - 9.15K warming with the non-linear model

 ΔT_s (K)

Potential source for the dependency on background warmth

 Based on CESM2 results, keep the second order term of the Taylor series:

$$F = \Delta R_{TOA} \approx \Delta R_{TOA}' \Delta T_s + \frac{\Delta R_{TOA}''}{2} \Delta T_s^2$$

• Following the definition of net response parameter:

$$\frac{\Delta R_{TOA}}{\Delta T_s} = \lambda (\Delta T_s) \approx \Delta R_{TOA}' + \frac{\Delta R_{TOA}''}{2} \Delta T_s$$

• For CESM2, $\frac{\Delta R_{TOA}''}{2} < 0$, λ decreases with warming. Given that $F = \lambda(\Delta T_s)\Delta T_s$, increasing background warmth increases climate sensitivity.

The rise of λ non-linearity

- For every W/m² linear increase of *F*, *calculate*
 - Δ*FSUTOA*: TOA reflected shortwave
 - $\Delta \epsilon$: changes in planetary emissivity
- $\Delta FSUTOA \sim F(\Delta R_{TOA})$
 - decrease with increasing forcing → enhanced positive shortwave feedback
- $\sigma T_s^4 \Delta \epsilon \sim F(\Delta R_{TOA})$
 - $\sigma T_s^4 \Delta \epsilon$ decrease with increasing forcing \rightarrow enhanced positive longwave feedback

F (W/m²)

Implications to paleoclimate

- Estimating ECS from past climate is perhaps less useful than estimating the net response parameter
 - ECS varies continuously (not just at high CO₂) with background climate warmth due to non-linearity in net response parameter
- Perhaps provides an explanation for warm climates with moderately elevated CO₂?
 - Mid-Miocene? (Kürschner et al., 2008 PNAS; Rea et al., 2020 Ann. Rev. Ear. Pla.)

Thanks for your attention!