CESM & New Technologies: Clouds, Containers and Accelerators (GPUs)

Brian Dobbins NCAR/CGD June 15th, 2022

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

CESM in the Cloud

CESM2-ARISE Experiments

Geoengineering ensembles:

- 1-degree WACCM case
- >15M CPU hours

NCAR

~1PB of raw output

Full workflow on AWS (build, run, postprocess, archive)

CESM Workshop 2022

CTSM Workshop

JupyterHub-based training:

- 60+ users
- Auto account creation
- Multiple queues / nodes

Simple, fast deployment for many-user training.

Current projects range from large-scale runs to workshops

How do we use the Cloud?

How do we use the Cloud?

There are <u>lots</u> of decisions that go into running on the cloud; we are simplifying that via our *CESM Cloud API*:

This offers several key advantages:

- Ease-of-use for scientists
- Multi-cloud support via a single interface
- Extensible features JupyterHub, 'Phone Home', tools, etc.

Cloud API Interface Examples

Cloud Economics (Compute)

CPU Costs (On-Demand Pricing)			
Node	AWS C5N	AWS HPC6a	Azure HBv3
Cost (per hour)	\$3.88	\$2.88	\$3.60
Cores (per node)	36	96	120
Cost (per core-hour)	0.11	0.03	0.03

Derecho 'Cost' Equivalent*: ~0.003 / core-hour

(*) Estimate based on ~\$32.5M for CPU portion, \$1M/year for power, 5year lifetime, *no personnel costs,* no NWSC facility costs

Cloud Economics (Data)

Cost Comparison			
20 TB	AWS S3	Azure Blob	
Storage Cost (Per Month)	\$471.04	\$425.98	
Egress Cost	\$1792.00	\$1443.50	

AWS / ASDI has been *very* supportive and hosts certain *public datasets* for free, like CESM2-LENS and CESM2-ARISE.

For other data, though, the cloud offers two main data hosting options:

- Host pays (potentially unbounded cost / financial denial-of-service)
- Downloader pays (more limited access)

<u>Containers</u>

Clouds offer preconfigured, standardized environments ... on demand from a variety of providers.

Containers offer preconfigured, standardized environments ... on your own hardware.

This makes it 'easy' to provide *ready-to-run* tools to the community:

- Greatly simplifies ease of porting
- Can ensure cross-system compatibility

CESM/CESM - Lab Containers

Goal: A consistent CESM & analysis environment for everyone.

Containers aren't limited to CESM itself..

We are also containerizing a variety of our tools:

- CAM Topology tools
- CESM time-series generation tool
- Compression tools

On Desktops/Laptops, we typically use Docker images. On HPC systems, we test with Singularity/Apptainer.

Unified Cloud / Container Platforms

The key point about both clouds and containers is that you have full control over the *environment* used by an application.

Enables ensuring cloud/container compatibility.
 (Learn / test on the container, move to the cloud easily!)

Also working on standardizing *Jupyter* environments:

EASE – "Earth Analysis Science Environment"
 Preinstalled Conda environment with Pangeo + CESM tools

<u>Goal</u>: Same EASE kernel on NCAR/Cloud/Container environments

Accelerators & CESM

Four key challenges for Accelerator/GPU use in CESM:

- Performance vs Efficiency
- Science Capability vs Capacity
- Code Portability
- Resources

A *complex* topic that's often misrepresented as as simple one!

Performance vs Efficiency

Distinction between *efficiency* and *performance*:

MPAS-Atmosphere (v6), 120km resolution, 58L, DP

Hardware	<i>Efficiency (SYPD)</i> (1 GPU or CPU node)	
GPU (NVIDIA A100)	17.90	
CPU (2 x 64c Zen3)	6.53	

Performance vs Efficiency

Distinction between *efficiency* and *performance*:

MPAS-Atmosphere	(v6), 120km resolutio	n, 58L, DP
-----------------	-----------------------	------------

Hardware	<i>Efficiency (SYPD)</i> (1 GPU or CPU node)	<i>Performance (SYPD)</i> (Scaled out)
GPU (NVIDIA A100)	17.90	26.45
CPU (2 x 64c Zen3)	6.53	103.76

At our workhorse resolution, MPAS as a proxy shows:

- GPUs are more *efficient* (by $\sim 3x!$)
- CPUs scale out and are more *performant* (by ~4x!)

Science Capability vs Capacity

Should NCAR focus on enabling a few uniquely large-scale runs? Or on supporting a high volume of science at workhorse scales?

Code Portability

	NVIDIA	AMD	Intel
Accelerator	A100	MI200	PV (Xe)
CUDA	\checkmark	×	×
OpenACC	 	 	×
OpenMP	\checkmark	\checkmark	\checkmark

Not every method works on every platform!

- For a *community model*, we <u>need</u> portability.

CISL has been working with an OpenACC –> OpenMP converter which would be a good path forward.

Resources (People & Systems)

Models of similar complexity have taken >10 FTE yrs to GPUize:

- Do we focus our efforts on this, or on science features?
- Can we get additional funding or community help to do both?

Still *relatively* low adoption of GPUs in academic systems:

- Top500 US Academic sites
- Informal XSEDE CC Survey

Extra: Climate Data Network

Near-term challenge: Localized input data for model runs

Extra: Climate Data Network

Near-term challenge: Localized input data for model runs Long-term challenge: Data-sharing network for online analysis

<u>Summary</u>

- CESM & JupyterHub usable via AWS for science & training
 Easy to use, but not as cost-effective as on-prem systems
- Containers enable ready-to-run applications on your own hardware
 New tools will likely really benefit the community (eg, time-series)
- Our GPU approach is a careful balance of technology, science, systems and people to do what's *best* for the CESM community.
 Efficiency & *performance* are very different at ~1-degree runs!

CESM Workshop 2022

• Data access is a growing issue, and we're looking at some ideas here.

Thank you!

Questions / Comments?

bdobbins@ucar.edu

