
This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

Enabling the execution of PUMAS on GPUs

Jian Sun, John Dennis, Sheri Mickelson, Brian Vanderwende,
Andrew Gettelman, Katherine Thayer-Calder

27th CESM workshop
June 15, 2022

Outline

Enabling the execution of PUMAS on GPUs

 What is cloud microphysics?

 Code overview of cloud microphysics scheme in CAM (PUMAS)

 Methodology

 Preliminary results & discussion

 Summary & future work

What is cloud microphysics?

Enabling the execution of PUMAS on GPUs

(Morrison et al., 2020)

“…small‐scale (from sub‐micron to cm) processes
driving the formation and evolution of cloud and
precipitation particles…”

Code review of cloud microphysics scheme: PUMAS

Enabling the execution of PUMAS on GPUs

 PUMAS:

• micro_pumas_v1.F90: ~2900 lines, 7 subroutines/functions

• micro_pumas_utils.F90: ~2000 lines, 54 subroutines/functions

 CAM:

• wv_sat_methods.F90: ~400 lines, 29 subroutines/functions

• wv_saturation.F90: ~700 lines, 30 subroutines/functions

• 33 additional CAM codes related to wv_* F90

 CAM physics source codes: ~410,000 lines

• PUMAS represents ~1.2% of CAM physics codes

• PUMAS contributes to ~8% of computational time of CAM physics

Offload to GPU

Enabling the execution of PUMAS on GPUs

 Start from a KGen kernel (easy for code development and debug)

 Use OpenACC and OpenMP offload to port CPU codes to GPU

• Directives-based parallel programming model Single source code ✓

• Convert CPU codes to GPU codes by adding pragmas (Readability ✓)

• Intel’s auto-migration tool from OpenACC to OpenMP offload
(https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp)

Code size of OpenACC version (similar for OpenMP offload)
 PUMAS:

• micro_pumas_v1.F90: ~2900 lines ~3200 lines
• micro_pumas_utils.F90: ~2000 lines ~2200 lines

 CAM:
• wv_sat_methods.F90: ~400 lines ~460 lines
• wv_saturation.F90: ~700 lines ~790 lines

Increase the code size by ~10%

Correctness

Enabling the execution of PUMAS on GPUs

 Does the GPU version of PUMAS/CAM codes return the bit-for-bit results compared with the
CPU version of codes?

 If yes, that is great!

 If no, we need to ask ourselves “Is this difference expected?”

• If yes, run a verification test (e.g., ECT, AMWG diagnostics package, etc)

• If no, it could be something we do not understand fully (likely) or a code bug (more likely)

 Always check the correctness before looking at the performance.

Performance of KGen kernel

Enabling the execution of PUMAS on GPUs

• One CPU node (CPU run) vs. one
MPI rank + one GPU (GPU run)

• Log scale for X- and Y-axis

• GPU performs worse than CPU
consistently

Profiling KGen kernel

Enabling the execution of PUMAS on GPUs

• Example of computational hotspots in the GPU code: loops with dependency

Original implementation

New implementation

• Solution: reverse the loop order

Profiling KGen kernel (cont’d)

Enabling the execution of PUMAS on GPUs

• Example of computational hotspots in the GPU code: sedimentation subroutines run in serial

Original implementation New implementation

• Solution: run them asynchronously

Performance of KGen kernel (new implementations)

Enabling the execution of PUMAS on GPUs

After some optimizations, we find:

• The performance of OpenACC
and OpenMP offload is largely
improved, which the CPU
performance is marginally
affected

• The performance of OpenACC
and OpenMP offload is
competitive, but OpenACC is
better in general

• GPU outperforms CPU for large
problem size

CAM configuration

Enabling the execution of PUMAS on GPUs

 Test configurations:

 Compset: F2000dev

 Cloud microphysics: MG3 configuration

 Dycore: FV

 Resolution: 1 degree for FV

 Simulation length: 1 day

 Machine: Cheyenne (CPU), Casper (CPU and GPU)

 Resource: one compute node with 36 CPU cores, one V100 GPU per node

 PCOLS: different data sizes offloaded to GPU per time

Performance of PUMAS in CAM

Enabling the execution of PUMAS on GPUs

• GPU-enabled PUMAS can outperform its CPU version in a practical CAM simulation

Computation vs. data movement in a GPU run

Enabling the execution of PUMAS on GPUs

• Data transfer could be more time-consuming than computation

Summary

Enabling the execution of PUMAS on GPUs

 What is next?
 Multiple GPUs per node

 High-resolution CAM simulation

 Sensitivity tests with different PUMAS configuration

 One manuscript is under preparation

 What we have done/learned:
 Port PUMAS to GPU by OpenACC and OpenMP offload

 Evaluate the performance on CPU and GPU

 Even one GPU per node is showing promising results

 OpenMP offload is relatively immature compared to OpenACC more evaluations needed

Acknowledge

Enabling the execution of PUMAS on GPUs

 Many thanks to contributions/helps from different labs/organizations:

 CISL: Supreeth Madapur Suresh, Cena Miller, Allison Baker, Daniel Howard

 CSEG: Jim Edwards

 CGD: Cheryl Craig, Steve Goldhaber

 Areanddee: Rich Loft

 NVIDIA: Raghu Raj Prasanna Kumar

 INTEL: Harald Servat

 ORNL: Youngsung Kim

 This work is funded by the following project:

 NSF CSSI EarthWorks (Award number: 2005137)

 NSF NCAR-base funding

	Slide Number 1
	Outline
	What is cloud microphysics?
	Code review of cloud microphysics scheme: PUMAS
	Offload to GPU
	Correctness
	Performance of KGen kernel
	Profiling KGen kernel
	Profiling KGen kernel (cont’d)
	Performance of KGen kernel (new implementations)
	CAM configuration
	Performance of PUMAS in CAM
	Computation vs. data movement in a GPU run
	Summary
	Acknowledge

