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What is cloud microphysics?
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(Morrison et al., 2020)

“…small‐scale (from sub‐micron to cm) processes 
driving the formation and evolution of cloud and 
precipitation particles…”



Code review of cloud microphysics scheme: PUMAS
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 PUMAS:

• micro_pumas_v1.F90: ~2900 lines, 7 subroutines/functions

• micro_pumas_utils.F90: ~2000 lines, 54 subroutines/functions

 CAM:

• wv_sat_methods.F90: ~400 lines, 29 subroutines/functions

• wv_saturation.F90: ~700 lines, 30 subroutines/functions

• 33 additional CAM codes related to wv_* F90

 CAM physics source codes: ~410,000 lines

• PUMAS represents ~1.2% of CAM physics codes

• PUMAS contributes to ~8% of computational time of CAM physics



Offload to GPU
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 Start from a KGen kernel (easy for code development and debug)

 Use OpenACC and OpenMP offload to port CPU codes to GPU

• Directives-based parallel programming model  Single source code ✓

• Convert CPU codes to GPU codes by adding pragmas (Readability ✓)

• Intel’s auto-migration tool from OpenACC to OpenMP offload 
(https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp)

Code size of OpenACC version (similar for OpenMP offload)
 PUMAS:

• micro_pumas_v1.F90: ~2900 lines  ~3200 lines 
• micro_pumas_utils.F90: ~2000 lines  ~2200 lines 

 CAM:
• wv_sat_methods.F90: ~400 lines  ~460 lines 
• wv_saturation.F90: ~700 lines  ~790 lines 

Increase the code size by ~10%



Correctness
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 Does the GPU version of PUMAS/CAM codes return the bit-for-bit results compared with the 
CPU version of codes?

 If yes, that is great!

 If no, we need to ask ourselves “Is this difference expected?”

• If yes, run a verification test (e.g., ECT, AMWG diagnostics package, etc)

• If no, it could be something we do not understand fully (likely) or a code bug (more likely)

 Always check the correctness before looking at the performance.



Performance of KGen kernel
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• One CPU node (CPU run) vs. one 
MPI rank + one GPU (GPU run)

• Log scale for X- and Y-axis

• GPU performs worse than CPU 
consistently



Profiling KGen kernel
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• Example of computational hotspots in the GPU code: loops with dependency 

Original implementation

New implementation

• Solution: reverse the loop order



Profiling KGen kernel (cont’d)
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• Example of computational hotspots in the GPU code: sedimentation subroutines run in serial

Original implementation New implementation

• Solution: run them asynchronously



Performance of KGen kernel (new implementations)
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After some optimizations, we find:

• The performance of OpenACC
and OpenMP offload is largely 
improved, which the CPU 
performance is marginally 
affected

• The performance of OpenACC
and OpenMP offload is 
competitive, but OpenACC is 
better in general

• GPU outperforms CPU for large 
problem size



CAM configuration
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 Test configurations:

 Compset: F2000dev

 Cloud microphysics: MG3 configuration

 Dycore: FV

 Resolution: 1 degree for FV

 Simulation length: 1 day

 Machine: Cheyenne (CPU), Casper (CPU and GPU)

 Resource: one compute node with 36 CPU cores, one V100 GPU per node

 PCOLS: different data sizes offloaded to GPU per time



Performance of PUMAS in CAM
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• GPU-enabled PUMAS can outperform its CPU version in a practical CAM simulation



Computation vs. data movement in a GPU run
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• Data transfer could be more time-consuming than computation



Summary
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 What is next?
 Multiple GPUs per node

 High-resolution CAM simulation

 Sensitivity tests with different PUMAS configuration

 One manuscript is under preparation

 What we have done/learned:
 Port PUMAS to GPU by OpenACC and OpenMP offload

 Evaluate the performance on CPU and GPU

 Even one GPU per node is showing promising results

 OpenMP offload is relatively immature compared to OpenACC more evaluations needed
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