

UC San Diego Halicioğlu data science institute

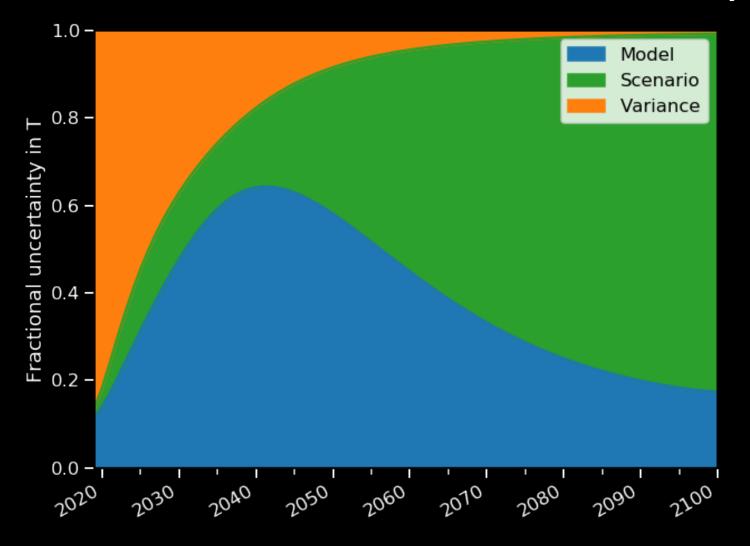
A Community Earth System Emulator for UQ and Calibration

Duncan Watson-Parris, Scripps / HDSI (UC San Diego), Andrew Williams, Lucia Deaconu and Philip Stier (University of Oxford) CESM Parameter Estimation Cross Working Group

erc

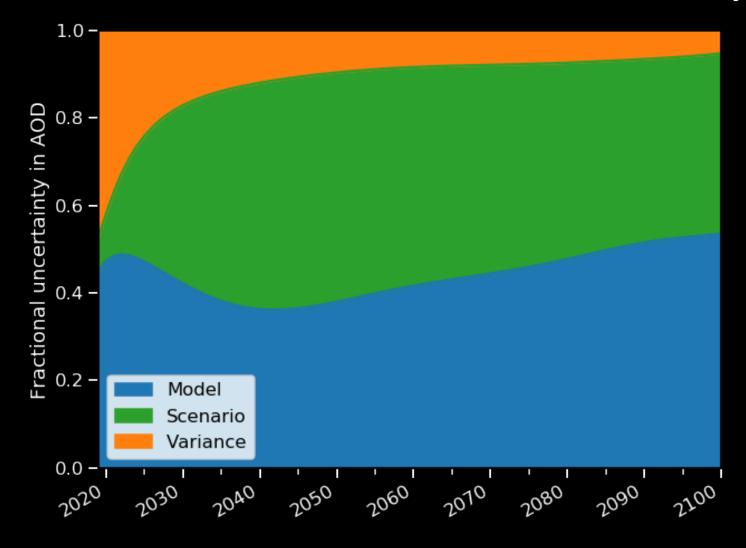
12th June 2023

Sources of uncertainty



Watson-Parris 2021

Sources of uncertainty



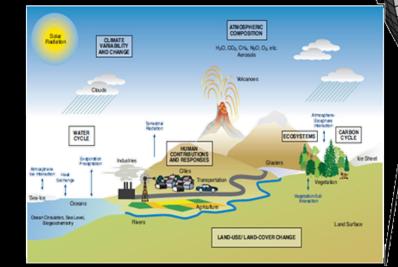
Watson-Parris 2021

Climate models

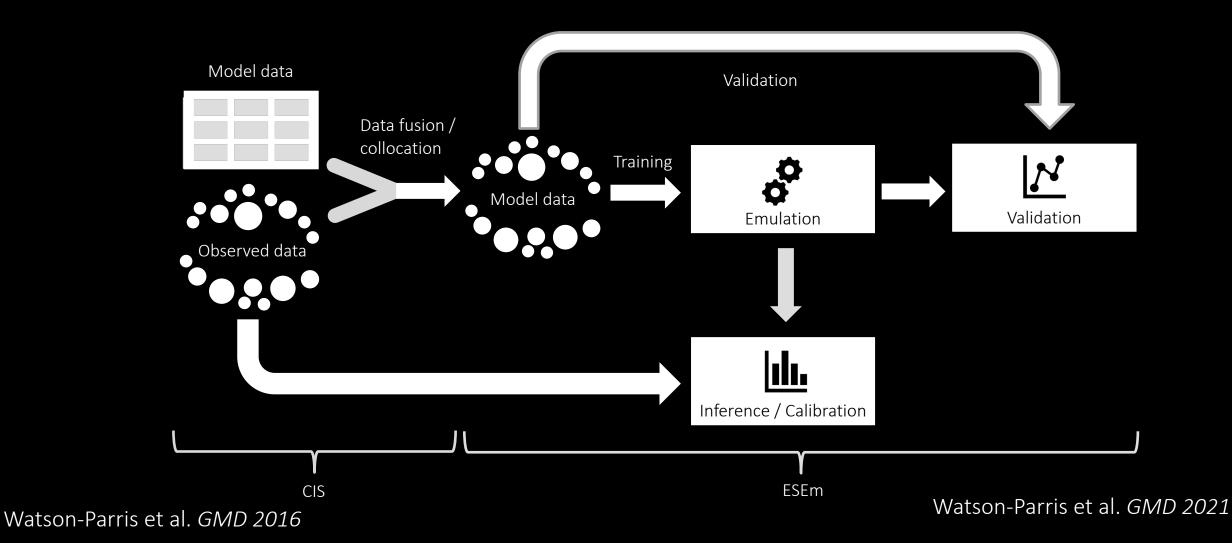
Schematic for Global Atmospheric Model

Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)



Earth System Emulator (ESEm)



Exploring parametric uncertainty

- A climate model is a function \mathcal{F} of input forcers X and parameters θ and generates outputs $Y: \mathcal{F}(X, \theta) = Y$.
- Given a set of observations of *Y*, denoted *Y*⁰, we would like to calculate the inverse: $\mathcal{F}^{-1}(Y^0) = \theta$.
- Or, more precisely, we would like to know the posterior probability distribution of the input parameters:

$$p(\theta|Y^0) = \frac{p(Y^0|\theta)p(\theta)}{p(Y^0)}$$

Likelihood-free inference

- We cannot compute the full likelihood but can approximate it using Approximate Bayesian computation (ABC; or rejection sampling):
 - 1. Draw θ from $p(\theta)$
 - ^{2.} Calculate $\mathcal{F}(\theta)$ to determine *Y*
 - 3. Accept θ if $\rho(Y^0, Y) \leq \epsilon$
- As $\epsilon \to \infty$, we get observations from the prior, $p(\theta)$
- As $\epsilon \to 0$, we generate observations from $p(\theta|Y^0)$
- In practice we need many, many samples and so a surrogate model, or emulator, is used: E(θ)~F(θ)

Implausibility

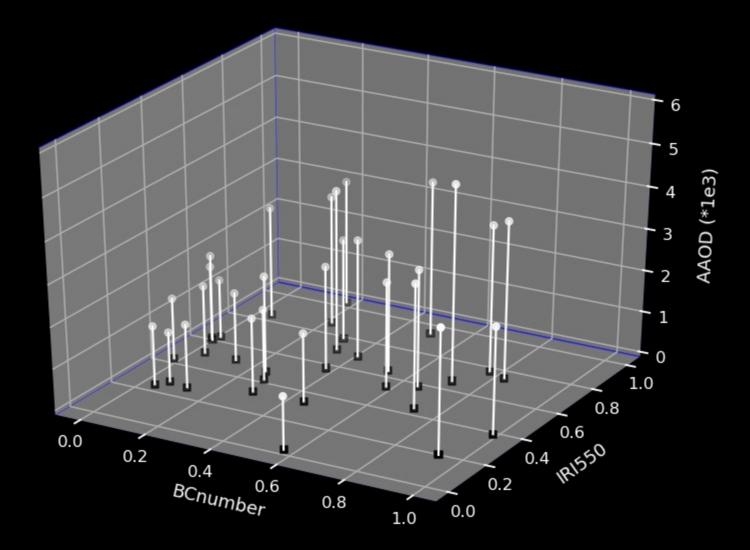
- In practice, we need to define the distance, $\rho(Y^0, Y)$
- We use the concept of an implausibility metric:

$$I(\theta) = \frac{|Y^0 - E[\eta(\theta)]|}{\sqrt{[Var(\phi(\theta)) + Var(\epsilon) + Var(\delta)]}}$$

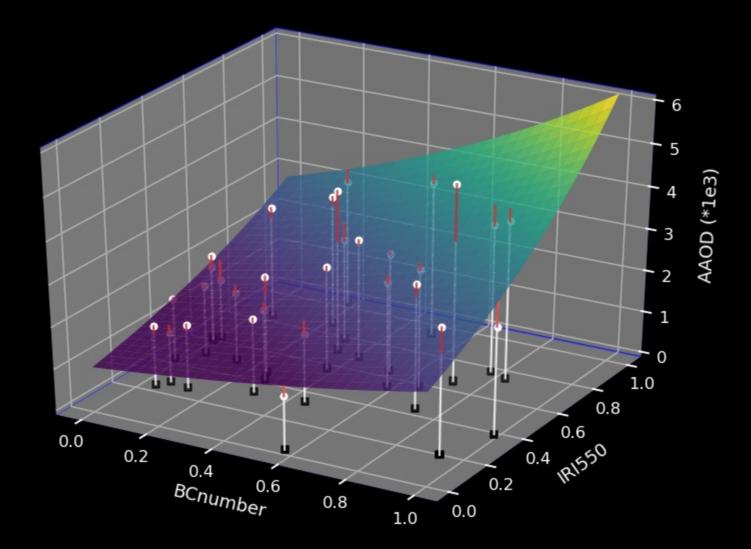
Observation Model output [Prediction from emulator] Emulator prediction uncertainty Observational uncertainty Structural uncertainty

 Assuming this distribution is unimodal, we can then use the 3σ to rule out parameter combinations at 95% confidence

Emulation

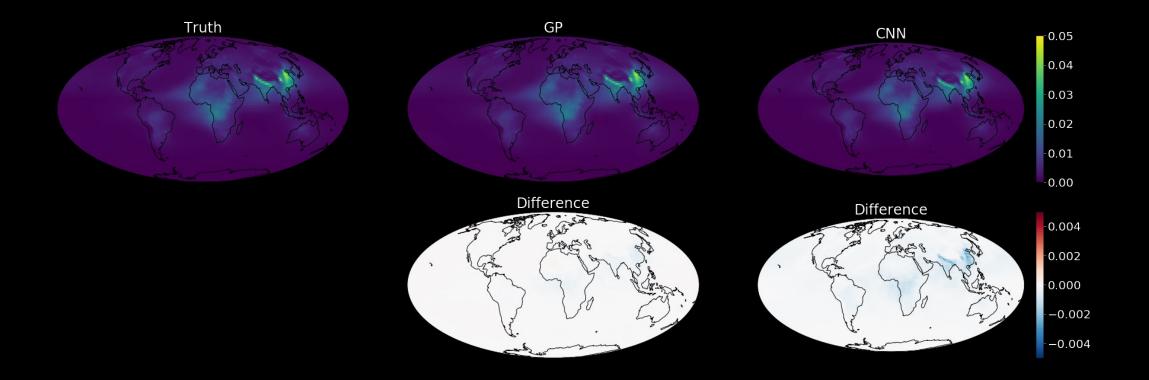


Emulation

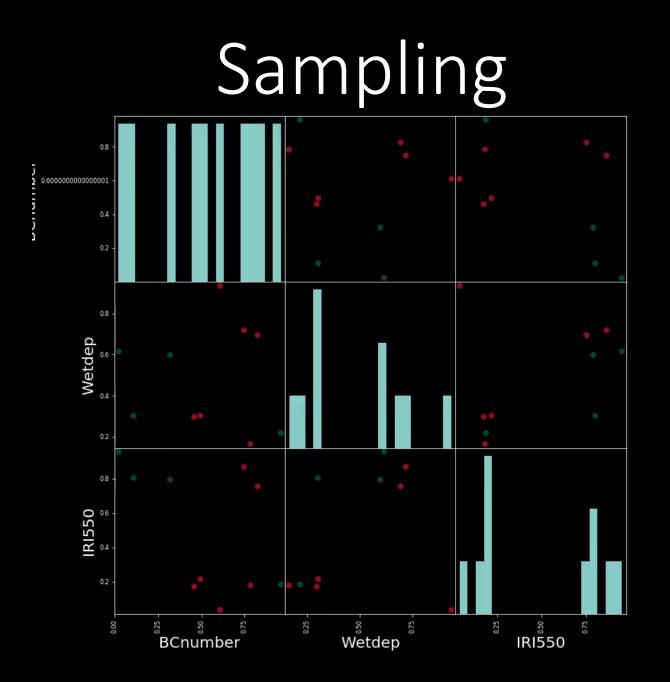


10

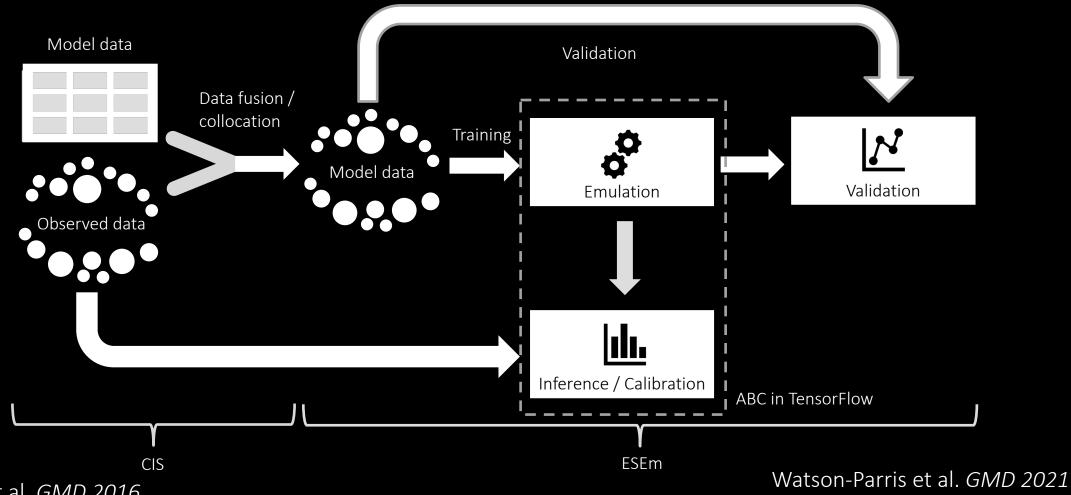
Emulation



Kasim et al. 2020 Watson-Parris et al. GMD 2021



Earth System Emulator (ESEm)



Watson-Parris et al. GMD 2016

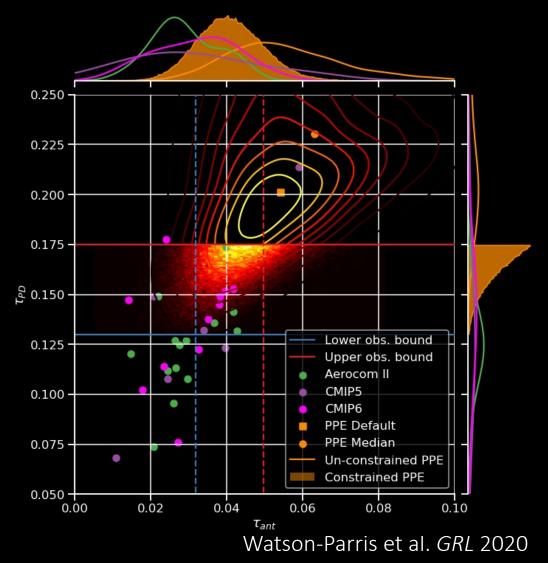
Parametric uncertainty

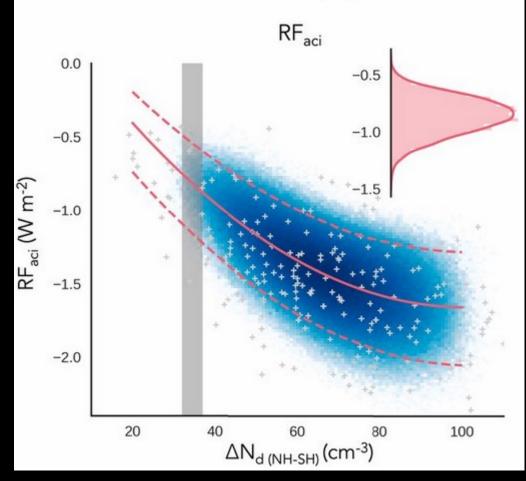
Table 1. The uncertain parameters and emissions factors

Parameter Key	Parameter name	Description of parameter	Uncertainty range	Effect
P1	BL_NUC	Boundary layer nucleation rate coeff (A)	$3.2e^{-7}$ - $2e^{-4}s^{-1}$	Absolute
P2	FT_NUC	Free troposphere nucleation rate	0.01-10	Scaled
P3	AGEING	Ageing "rate" from insoluble to soluble	0.3–5 monolayer	Absolute
P4	ACT_DIAM	Cloud drop activation dry diameter	50–100 nm	Absolute
P5	SO2O3_CLEAN	pH of cloud drops (controls $SO_2 + O_3$)	pH 4-6.5	Absolute
P6	SO2O3_POLL	pH of cloud drops $(SO_2 + O_3)$	pH 3.5-5	Absolute
P 7	NUC_SCAV_DIAM	Nucleation scavenging diameter offset dry diameter	0-50 nm	Absolute
P8	NUC_SCAV_ICE	Nucleation scavenging fraction (accumulation mode) in mixed and ice clouds ($T < -15$ °C)	0-1	Scaled
P9	DRYDEP_AER_AIT	Dry deposition velocity of Aitken mode aerosol	0.5-2	Scaled
P10	DRYDEP_AER_ACC	Dry deposition velocity of accumulation mode aerosol	0.1-10	Scaled
P11	ACC_WIDTH	Modal width (accumulation soluble/insoluble)	1.2-1.8	Absolute
P12	AIT_WIDTH	Modal width (Aitken soluble/insoluble)	1.2-1.8	Absolute
P13	NUCAIT_WIDTH	Mode separation diameter (nucleation/Aitken)	9–18 nm	Absolute
P14	AITACC_WIDTH	Mode separation diameter (Aitken/accumulation)	$0.9-2 \times ACT_DIAM$	Scaled
P15	FF_EMS	BC/OC mass emission rate (fossil fuel)	0.5-2	Scaled
P16	BB_EMS	BC/OC mass emission rate (biomass burning)	0.25-4	Scaled
P17	BF_EMS	BC/OC mass emission rate (biofuel)	0.25-4	Scaled
P18	FF_DIAM	BC/OC emitted mode diameter (fossil fuel)	30–80 nm	Absolute
P19	BB_DIAM	BC/OC emitted mode diameter (biomass burning)	50–200 nm	Absolute
P20	BF_DIAM	BC/OC emitted mode diameter (biofuel)	50–200 nm	Absolute
P21	PRIM_SO4_FRAC	Mass fraction of SO ₂ converted to new SO_4^{2-} particles in sub-grid power plant plumes	0–1 %	Absolute
P22	PRIM_S04_DIAM	Mode diameter of new sub-grid SO_4^{2-} particles	20–100 nm	Absolute
P23	SS_ACC	Sea spray mass flux (coarse/accumulation)	0.2-5	Scaled
P24	ANTH_S02	SO ₂ emission flux (anthropogenic)	0.6-1.5	Scaled
P25	VOLC_SO2	SO ₂ emission flux (volcanic)	0.5-2	Scaled
P26	DMS_FLUX	DMS emission flux	0.5-2	Scaled
P27	BIO_SOA	Biogenic monoterpene production of SOA	5–360 Tg a ⁻¹	Absolute
P28	ANTH_SOA	Anthropogenic VOC production of SOA	2–112 Tga ⁻¹	Absolute

Lee et al. 2013.

Constraining parametric uncertainty





McCoy et al. 2020

Calibrating CESM2 PPE on Casper: Setup

mport xarray as xr
mport numpy as np
mport pandas as pd
rom esem import gp_model
rom esem.utils import validation_plot, get_param_mask
lef global_mean(ds):
<pre>weights = np.cos(np.deg2rad(ds.lat))</pre>
<pre>return ds.weighted(weights).mean(['lat', 'lon'])</pre>
ef get_ensemble_member(ds):
<pre>fname = ds.encoding['source']</pre>
<pre>member = int(fname.split('.')[-4])</pre>
return ds.assign_coords(member=member).expand_dims('member')

Calibrating CESM2 PPE on Casper: Data Reading

- []: data_path = '/glade/campaign/cgd/projects/ppe/cam_ppe/rerun_PPE_250/'
 params=xr.open_dataset(data_path+"parameter_262_w_control.nc").to_pandas().drop(columns=['Sample_nmb'])
 ds = xr.open_mfdataset(data_path+'PD/PD_timeseries/*/atm/hist/cc_PPE_250_ensemble_PD.*.h0.SWCF.nc', preprocess=get_ensemble_member)
 SWCF = global_mean(ds['SWCF']).mean('time').compute()
- []: # Some of the PPE members are missing data so just select the params we actually have sub_params = params.iloc[SWCF.member.values] # Unit normalise all the parameters ppe_params = (sub_params - sub_params.min()) / (sub_params.max() - sub_params.min())
- []: # We can use an information criterion to choose the best parameters automatically: best_params = ppe_params[ppe_params.columns[get_param_mask(ppe_params, SWCF)]] best_params.columns

[]: n_test = 25

X_test, X_train = best_params[:n_test], best_params[n_test:]
Y_test, Y_train = SWCF[:n_test], SWCF[n_test:]

Calibrating CESM2 PPE on Casper: Emulation

Calibrating CESM2 PPE on Casper: Calibration

[]: from esem.utils import get_random_params from esem.abc_sampler import ABCSampler, constrain

[]: # Setup sampler with 1 million points
sample_points = pd.DataFrame(data=get_random_params(23, int(1e6)), columns=X_train.columns)
sampler = ABCSampler(gp, np.asarray([-40.5]), obs_uncertainty=0.5)

[]: valid_samples = sampler.batch_constrain(sample_points, batch_size=10000)

回 个 ↓ 古 〒 🗉

[28]: print("Remaining points: {}".format(valid_samples.sum()))

Remaining points: 100

Conclusions and outlook

- Climate model emulation is an important tool for constraining parameter uncertainty, and has been used for a while
- A fast, open tool leveraging modern ML libraries is introduced which makes the whole workflow straightforward and reproducible
- We also demonstrate how such tools can be used for exploring uncertainty in future emissions scenarios
- ESEm is designed to be easily extended to include other ML models
- We welcome feedback and suggestions, especially with pull requests!

https://github.com/duncanwp/ESEm

Spare slides

Getting your priors straight

0.0	0.0	0.2	0.4	0.6	0.8	1.0
BL_NUC		-			-	
AGEING						
ACC_WIDTH						
AIT_WIDTH						
CLOUD_PH						
CARB_FF_EMS						
CARB_BB_EMS						
CARB_RES_EMS						
CARB_FF_DIAM						
CARB_BB_DIAM						
BS						
PRIM_SO4_FRAC						
PRIM_SO4_DIAM						
SEA_SPRAY						
ANTH_SO2						
VOLC_SO2						
BVOC_SOA						
DMS						
DRY_DEP_AIT						
DRY_DEP_ACC						
DRY DEP SO2						
KAPPA_OC						
SIGW						
DUST						
RAIN_FRAC						
-OUD_ICE_THRESH						

Ч

Getting your priors straight