

Large Ensemble Diagnostic Evaluation of Hydrologic Parameter Uncertainty in the Community Land Model Version 5 (CLM5)

Hongxiang Yan¹, Ning Sun¹, Hisham Eldardiry¹, Travis Thurber¹, Patrick Reed², Keyvan Malek², Rohini Gupta², Daniel Kennedy³, Sean Swenson³, Zhangshuan Hou¹, Yanyan Cheng¹, and Jennie Rice¹

Pacific Northwest National Laboratory, Richland, WA, USA
 Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
 National Center for Atmospheric Research, Boulder, CO, USA

This research is supported by the U.S. Department of Energy, Office of Science, as part of research in MultiSector Dynamics, Earth and Environmental System Modeling Program

2. Characterize the effects of hydrologic parameter uncertainty on CLM5 streamflow predictions (**How**).

3. Perform a global sensitivity analysis to evaluate which CLM5 parameters most influence a suite of diagnostic hydrologic metrics (**Why**).



Are the baseline deterministic parameters and streamflow predictions acceptable?

How is hydrologic parameter uncertainty shaping CLM5's streamflow predictions?

Diagnostically assess which parameterized processes control key features of streamflow prediction errors.

IM3 Study Area: Configure CLM5 from CONUS 1/8° gridcell to Basin scale

 Selected 464 CAMELS basins (natural flow basins) over CONUS to represent different hydroclimate regimes.

 The basins are classified into seven clusters for regional analysis using k-means++ clustering.

IM₃ **27 Diagnostic Error Metrics**

Num.	Metric and Flow Temporal Scale	Unit	Relevance		
1	Daily Kling Gupta Efficiency (D-KGE)	-	Multiobjective metric		
2	Daily Mean Absolute Error (D-MAE)	m³/s	Overall daily flow		
3	Daily Nash Sutcliffe Efficiency (D-NSE)	-	High daily flow		
4	Daily Root Mean Square Error (D-RMSE)	m³/s	High daily flow		
5	Daily Transformed Root Mean Square Error (D-TRMSE)	m³/s	Low daily flow		
6	Daily Flow Duration Curve Slope Bias	-	Daily flow flashiness		
7	Daily Variance Bias	-	Daily flow variability		
8	Num. of Days Contributing 50% of D-RMSE (D-E50)	day	Days of large error		
9	Monthly Kling Gupta Efficiency (M-KGE)	-	Multiobjective metric		
10	Monthly Mean Absolute Error (M-MAE)	m³/s	Overall monthly flow		
11	Monthly Nash Sutcliffe Efficiency (M-NSE)	-	High monthly flow		
12	Monthly Root Mean Square Error (M-RMSE)	m³/s	High monthly flow		
13	Monthly Transformed Root Mean Square Error (M-TRMSE)	m³/s	Low monthly flow		
14	Monthly Flow Duration Curve Slope Bias	-	Monthly flow flashiness		
15	Monthly Variance Bias	-	Monthly flow variability		
16	Num. of Months Contributing 50% of M-RMSE (M-E50)	month	Months of large error		
17	Annual Volume Bias	-	Total water balance		
18	Flow Regime Quantile 0-10% (Q0-10) Volume Bias	-	Low flow water balance		
19	Flow Regime Quantile 10-25% (Q10-25) Volume Bias	-	Low flow water balance		
20	Flow Regime Quantile 25-50% (Q25-50) Volume Bias	-	Moderate flow water balance		
21	Flow Regime Quantile 50-75% (Q50-75) Volume Bias	-	Moderate flow water balance		
22	Flow Regime Quantile 75-90% (Q75-90) Volume Bias	-	High flow water balance		
23	Flow Regime Quantile 90-100% (Q90-100) Volume Bias	-	High flow water balance		
24	Winter (DJF) Volume Bias	-	Seasonal water balance		
25	Spring (MAM) Volume Bias	-	Seasonal water balance		
26	Summer (JJA) Volume Bias	-	Seasonal water balance		
27	Fall (SON) Volume Bias	-	Seasonal water balance		

Most of literature focused only on 1 or 2 error metrics.

Here:

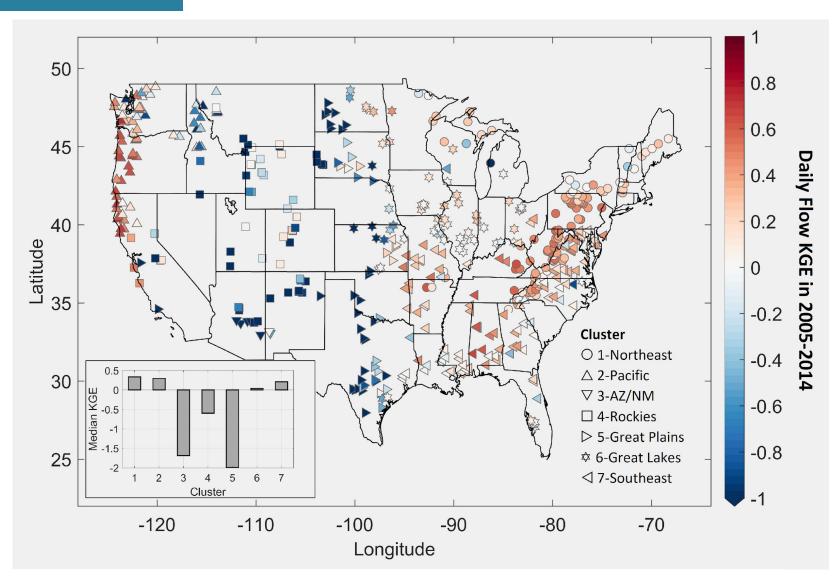
- A total of 27 diagnostic error metrics •
- Different metrics ask different questions, e.g. ٠

Hydrological Drought

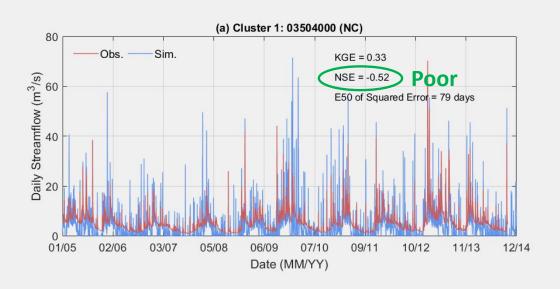
Reservoir

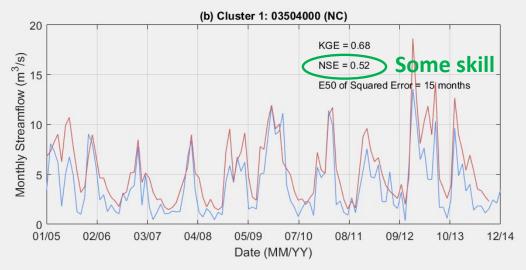
Operation

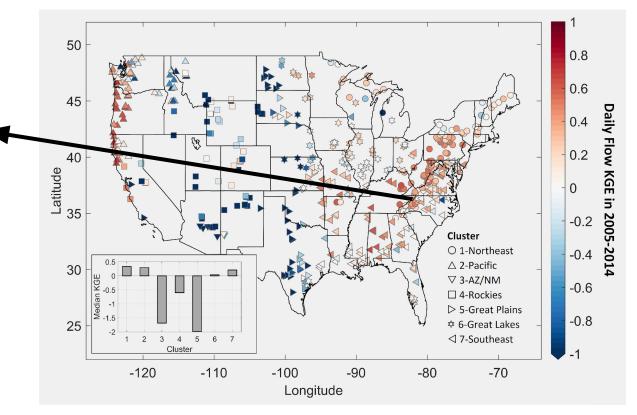
Flood Management


2. Characterize the effects of hydrologic parameter uncertainty on CLM5 streamflow predictions (**How**).

3. Perform a global sensitivity analysis to evaluate which CLM5 parameters most influence a suite of diagnostic hydrologic metrics (**Why**).

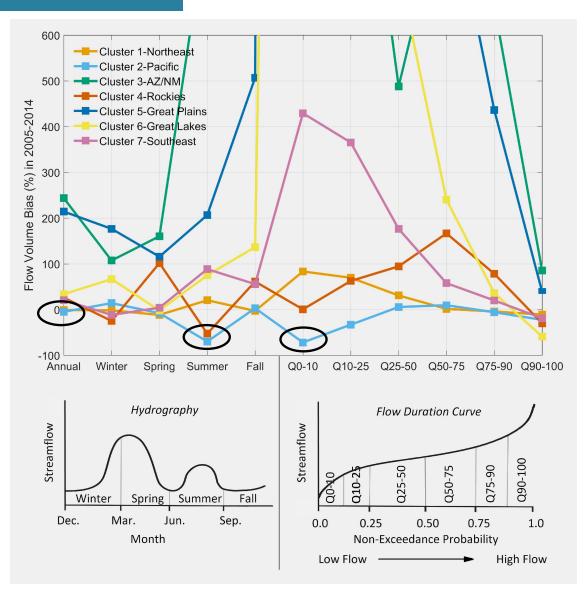

Are the baseline deterministic parameters and streamflow predictions acceptable?


IM3 Default Parameters Yield Strong Regional Differences in KGE Metric



- KGE ranges in (-∞, 1]
- KGE=1: perfect model prediction
- KGE>0.7: acceptable model performance
- KGE<0.5: some model skill
- KGE<0: very poor

IM3 Performances Vary in Different Time Scales (Daily Flow vs. Monthly Flow)



Why you need multiple diagnostic error metrics to get the full picture

IM₃ Default Parameters Yield Strong Regional Differences in Flow Volume Bias

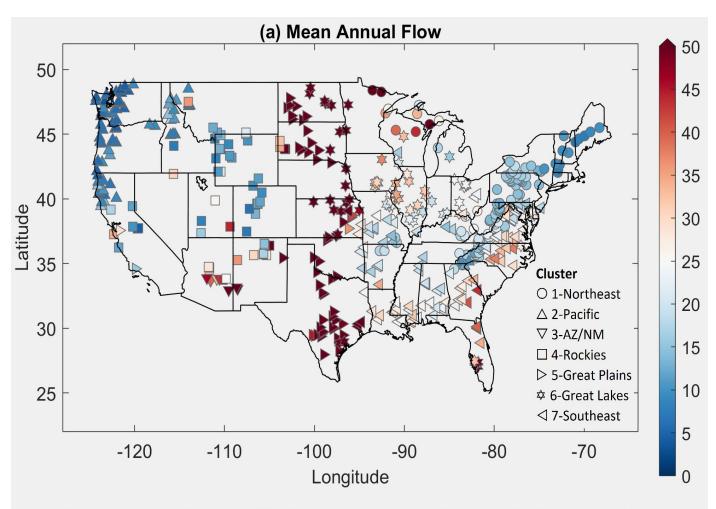
Even within the same cluster, default parameters showed large difference in hydrologic predictions across different flow regimes.

- Good annual water balance ≠ Good low flow
- Good annual water balance ≠ Good high flow

2. Characterize the effects of hydrologic parameter uncertainty on CLM5 streamflow predictions (**How**).

3. Perform a global sensitivity analysis to evaluate which CLM5 parameters most influence a suite of diagnostic hydrologic metrics (**Why**).

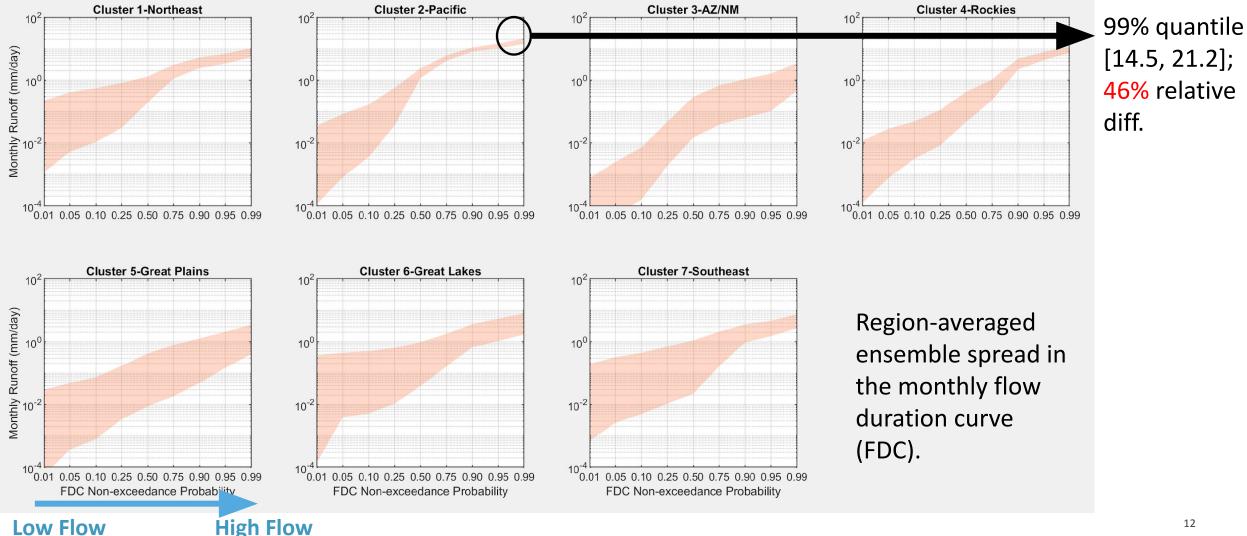
How is hydrologic parameter uncertainty shaping CLM5's streamflow predictions?

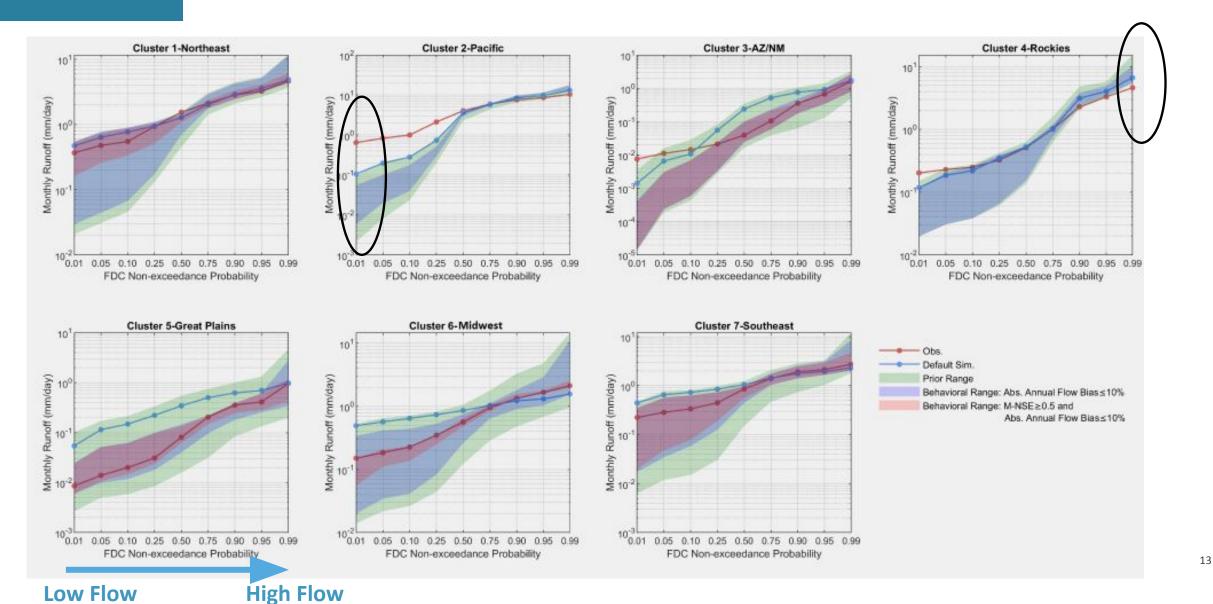

Parameter Uncertainty Characterization (UC)

Num.	Symbol	Definition	Relevant Process	Default Value	Prior Range
1	fff	Decay factor for fractional saturated area (1/m)	Surface runoff	0.5	[0.02, 5]
2	Nbf	Drainage power exponent	Subsurface runoff	1	[1, 2]
3	K _{bf}	Scalar multiplier for base flow rate	Subsurface runoff	0.01	[0.0005, 0.1]
4	Sγ	Minimum specific yield	Subsurface runoff	0.02	[0.01, 0.02]
5	в	Scalar multiplier for hydraulic conductivity power exponent	Soil water	1	[0.8, 1.2]
6	ψ_{sat}	Scalar multiplier for saturated soil matric potential	Soil water	1	[0.1, 5]
7	k _{sat}	Scalar multiplier for saturated hydraulic conductivity	Soil water	1	[0.1, 5]
8	θ _{sat}	Scalar multiplier for water content at saturation (porosity)	Soil water	1	[0.8, 1.2]
9	N _{melt}	Parameter controlling shape of snow covered area	Snow	200	[180, 220]
10	k _{acc}	Accumulation constant for fractional snow covered area	Snow	0.1	[0.1, 0.4]
11	p _{sno}	Maximum storage of snow on leaf surface (kg/m²)	Canopy water	6	[1.4, 9.5]
12	Plip	Maximum storage of liquid water on leaf surface (kg/m2)	Canopy water	0.1	[0.05, 2]
13	f _{wet}	Maximum fraction of leaf that may be wet prior to drip occuring	Canopy water	0.05	[0.01, 0.5]
14	d _{max}	Dry surface layer (DSL) parameter (mm)	Evaporation	15	[10, 60]
15	θ _{ini}	Fraction of saturated soil for moisture value at which DSL initiates	Evaporation	0.8	[0.5, 1]

IMz

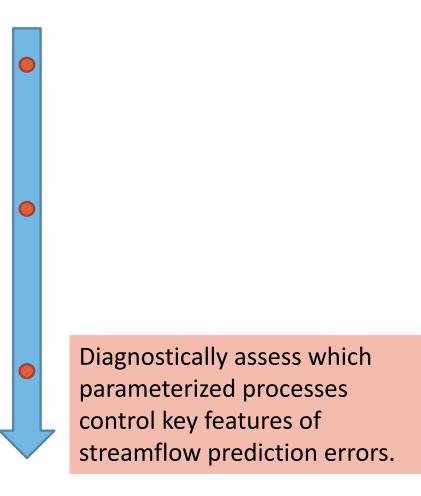
- 15 hydrologic parameters that include hydrologic processes of surface, subsurface, soil, snow, canopy, and evaporation.
- Draw 1,500 ensembles using Latin Hypercube Sampling (LHS); each ensemble = [15 parameter values]
- Total runs: 1,500 x 464 = 696,000 for the period 2005–2014

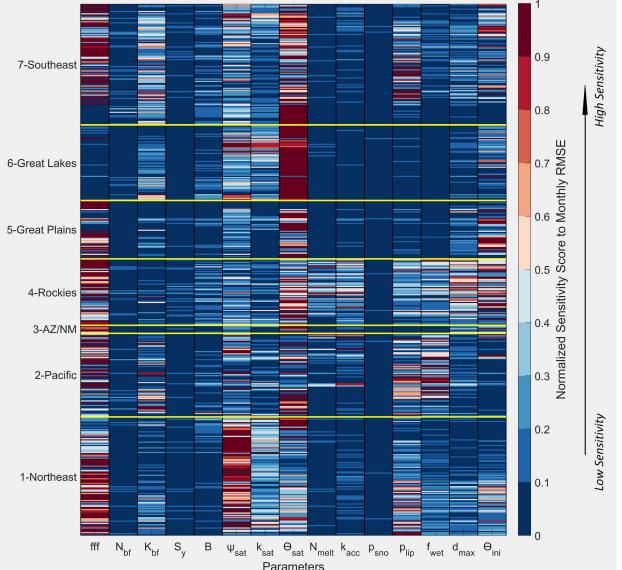

IM3 Parameter Uncertainty Strongly Affects Mean Annual Flow Prediction


Coefficient of Variation (%) of Ensemble Predictions during 2005-2014

- Coefficient of Variation (CV) = standard deviation / mean
- CV measures the dispersion of ensemble predictions.
- If CV=20% and mean=1, it suggests the standard deviation of ensembles is 0.2.

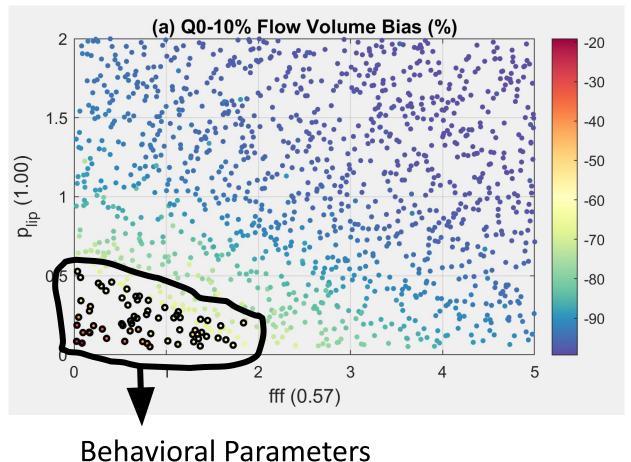
Parameter Uncertainty Yield Strongly Regional IM₃ **Differences in Flow Regime**

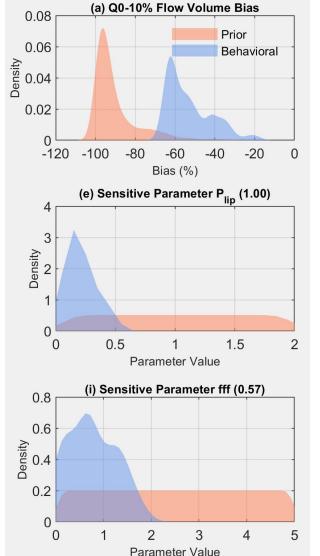

IM3 Behavioral Parameters with >1 Constrains



2. Characterize the effects of hydrologic parameter uncertainty on CLM5 streamflow predictions (**How**).

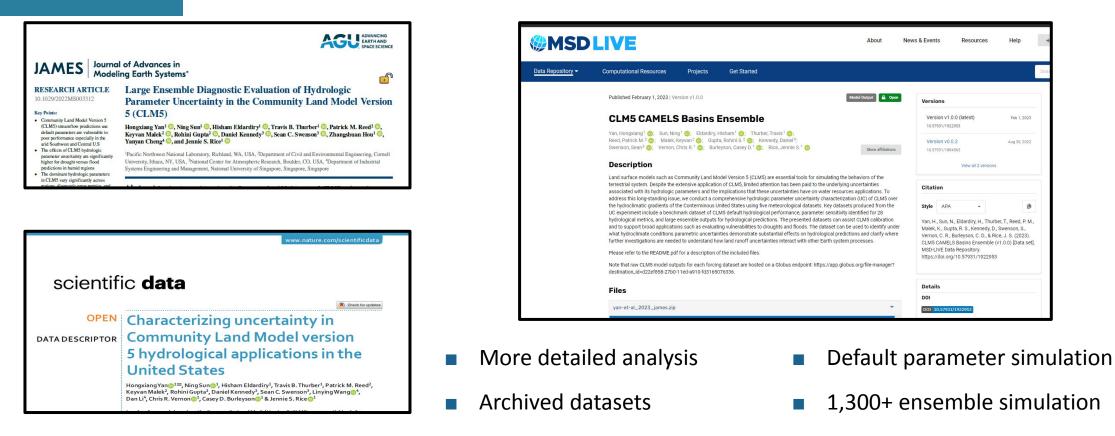
3. Perform a global sensitivity analysis to evaluate which CLM5 parameters most influence a suite of diagnostic hydrologic metrics (**Why**).


1M₃ 464 Basin Sensitivity Score to Monthly Root-Mean-Square-Error (RMSE) Metric (focusing high flow errors)



- Parameter sensitivity score showed regional pattern and related to CLM5 model structure (e.g., runoff generation structure, soil depth)
- Surface runoff parameter (*fff*) and soil parameters are the most sensitive parameters in most of the basin.
- These results can be guided in model calibration and provide model diagnosis.

IM3Two Parameters Dominate Low Flow and Top 5%
Parameters Partition (Behavioral Parameters)


A Basin in Cluster-1 as an example

- Linear separation
 - Those behavior
 parameters will
 produce enhanced
 ensemble streamflow
 predictions for
 drought studies.

M₃ Publications, Datasets, and Relevant Presentation

Parameter sensitivity score to 20+ metrics

Upcoming presentation. June 13 (Tuesday): 11:00 AM - 11:15 AM

Forcing-dependent parametric uncertainty in community land model simulations: evaluation of hydrologic signatures over the conterminous United States by Dr. Hisham Eldardiry

Five meteorological forcing