CESM Parameter Estimation with the
Data Assimilation Research Testbed (DART)

Jeff Anderson representing
CISL/Data Assimilation Research Section

CESM Parameter Estimation: 12 June 2023

NCAR
UCAR

National Center for The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or {
Atmospheric Research recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.




What is ensemble data assimilation?

Observations combined with an ensemble of model forecasts...




Data Assimilation Research Testbed (DART)

JA state-of-the-art ensemble Data Assimilation System for Geoscience.

[DART can be used for observing system simulation experiments:
Evaluate the impact of existing or proposed (remote sensing) observations,
Design observing systems.

[DART can also be used for real assimilation.
New remote sensing observations can be assimilated with any appropriate model.

[IState-of-the-art ensemble DA is essential to study impact of novel observations on prediction,

predictability, and model development.




Geophysical Models Interfaced to DART
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Earth System Observations (others available)
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DART CAM Reanalysis demonstrates maturity

The CAM6+DART Reanalysis for Earth System

Science

The Earth system can be viewed as distinct but connectad components: atmasphere, land,
ocean, cryosphere, biosphere, et cetera (Tig. 1). Data assimilation can help us create the
hes| available represenlalion of Lhe slale of Farlh, bul il raquirgs relevanl abservalions and
a forecast model which represents all of the components of interest.

Earth systern components interact in many ways at the interfaces between them.

NCAR's Community Earth Systern Model (CESM) can run forecasts with a flexible choice of
"active” components, in which the component model state avolves according to equations,
and “data” components, in which the component state is read from a data tile. For example,

1o generale almospheric lorec

5, lhe configuralion could have aclive almosphere and
land components, but simply read sca surface temperatures (SSTs) from data files, instead
of running an expensive, active, ocean component to generate S5Ts. CESM has been
developed al NCAR lor decades, and has evolved Lo work elfeclively with DARI through the
cftorts of the CCSM Software Cnginecering Group (M. Vertenstein, S. Goldhaber, J. Cdwards)
and R. Montuoro

Dala assimilahon has hean exlensively applied 1o the almosphars [or decades, bul nol 1o
the surface components until more recently. One hurdle has been that the surface
components tend to be more slowly varying, so they require atmospheric forcing over long
tima spans. It's expensiva to run an atmosphearic model, and many axparimants may raquire
the same atmospheric forcing, which would be wasteful to regenerate each time. l'urther,
research shows that an ensemble of surface models requires an ensemble of forcing from
the atmaosphere in order to maintain the necessary ensemble spread (Fig. 2).

So the cost is multiplied by the size of the ensemble. There are thus compelling reasons to
yenerate an ensemble of atmospheric forcing once and archive it for repeated use,

To satisfy this need the DART team has generated a “reanalysis” spanning years 2011 2020
using DART, CESM (v2.1) with an active atrnospheric model component, the Commmunity
Atmosphere Model version 6(CAME), and several million observations per day, This
reanalysis shares characteristics with widely uged reanalyses, such as ERAS (Hersbach, et
al., 2020), JRASS (Kohayashi, et al., 2015), and MERRA-Z (Gelaro, et al., 2017). The primary

gaoals of lhase are Lo provide a high resolulion (spalial and lemporal) deseriplion of Lhe

Figure | Earth system camponents interact in

muny wiays al he inlerfaces belween themn,

Unitarmn Cimata Farcing

e e L“JL:‘“' et ano
Figure 2: A single atmospheric forcing allows an
engemble Lo collapse (lop). Mulliple almosphaeric
forcings cauze the spread to increase (hottom).
Piclure vourlesy of A, Fox.

10 Year Reanalysis,
80 Members,

Provides forcing ensembles for other
CESM models,

Available from NCAR RDA.

https://rda.ucar.edu/datasets/ds345.0/




DART CAM Reanalysis demonstrates maturity
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Parameter estimation with state augmentation

Normally, assimilation uses observations to update model state variables
Things like gridded T, U, V, Q, leaf carbon, phytoplankton concentration, ice area...

If each ensemble forecast is generated with its own value of a parameter:
« The estimates of the parameter can be updated by observations
« Called state augmentation

Challenges:

« Parameters (by definition) do not change during forecasts
« Have to generate a prior (‘guess’) ensemble of values

* Never directly observed (state variables aren’t either)

« Constraints on legal (reasonable) values

Despite challenges, lots of success!




Ocean biogeochemical parameter estimation

Norwegian Sea Region

CCSM4: Community Climate System Model (Gent et al., 2011) with ocean components:
( Physics: Miami Isopycnic Coordinate Ocean Model (MICOM, Bleck et al., 1992)
( Biogeochemistry: The HAMburg Ocean Carbon Cycle (HAMOOCS5, Maier-Reimer
et al. 2005)
= NPZD-type BGC model with Carbon

Mike Weather
Station

Example of a parameter that that

*60° Example of a parameter shows a seasonal cycle closely related
that converged to the blooming periods
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1D State-Parameters Estimation using the EnKF:

d Weekly updates

(1 BGC state: 15 variables (tracers) & 11 parameters

(1 Data includes nutrient& oxygen profiles, surface
chlorophyll and partial pressure of CO,
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Gharamti, M., Tjiputra, J., Bethke, I., Samuelsen, A., Skjelvan, |., Bentsen, M., & Bertino, L. (2107). Ensemble Data Assimilation for Ocean
Biogeochemical State and Parameter Estimation at Different Sites. Ocean Modelling, 112, 65-89.




Ocean biogeochemical parameter estimation in MARBL

Base model
. . (oGcm)
* Objective: Implement 1D §

del fi . MARBL Driver | | MARBL
model configuration to ?gﬁgzl = ] | N
optimize a set of ocean | Crcinall et crbon | _|
parameters at testbed sites output | SR Joofs
using DART

Initial Condition SST

* Test Locations
Identified

Potential Temperature [deg(C]

Robin Armstrong (SIParCS), Dan Amrhein, Moha Gharamti and others
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Land parameter estimation in CLM: SIF-MIP2

Solar Induced Fluorescence Model Intercomparison Project: SIF-MIP 1) Create SIF fo rwa rd 0 pe rator (Ieaf to cano py)
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Land parameter estimation in CLM: SIF-MIP2

Solar Induced Fluorescence Model Intercomparison Project: SIF-MIP

Improved representation of
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Estimating Carbon Sources Using CAM

Development and Applications of a Carbon-Weather Data Assimilation System
by
Stephanie M. Wuerth

Doctor of Philosophy in Earth and Planetary Science

Designated Emphasis in Computational and Data Science and Engineering
University of California, Berkeley

Professor Inez Y. Fung, Chair

This dissertation explores the utility of high-resolution satellite carbon dioxide (CO2) and
water vapor measurements for advancing climate treaty verification, for improving numerical
weather prediction (NWP), and for understanding natural carbon cycling in the terrestrial
biosphere. We present a series of Observing System Simulation Experiments (OSSEs) using
a carbon-weather data assimilation (DA) system, where the state vector comprises weather

2003 Annual CO, Flux (kgCO,/m?/year)
____ ARSRun

CarbonTracker

G
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Figure 4.1: Annual CO, surface fluxes for the year 2003, in kg CO2/m?/year. The upper left panel
shows the flux calculated using equation 4.2 from Met-run fields (®s¢;). The upper right panel
shows the same using AIRS-run fields (®47rs). The lower left panel is the annual total flux from

CarbonTracker (®¢r), and the lower right panel is the annual flux used as forcing in both the Met-
and AIRS-runs (®prior).




Gravity Wave Drag Efficiency Parameter Estimation in CAM

Data Assimilation and Parameter Estimation in CAM3.0
Using the Data Assimilation Research Testbed
Kevin Raeder, Jeff Anderson, Tim Hoar, Hui Liu
Report to AMWG Working Group
2 March, 2005

1. Overview of DART.

2. Assimilation / Prediction (NWP) with CAM 3.0.

3. Parameter estimation using data assimilation.

4. Synthetic observation assimilation for predictability / diagnosis.




Gravity Wave Drag Efficiency Parameter Estimation in CAM

Efliciency factor for orographic gravity wave drag generation is treated as an additional
2D state variable and assimilated.

Model: CAM 3.0.7 T21L.26.

Assimilation / Prediction Experiments:

* 80 member ensemble divided into 4 equal groups.
Initialized from a climatological distribution (huge spread).
Initial tests for January, 2003.

Uses most observations used in reanalysis.

Assimilated every 6 hours; +/- 1.5 hour window for obs.




Gravity Wave Drag Efficiency Parameter Estimation in CAM

Climate Model Parameter Estimation via Ensemble Data Assimilation

T21 CAM assimilation
of gravity wave drag
efficiency parameter.

Oceanic values are
noise (should be 0).

0< efficiency< ~4

| 1 suggested by modelers.
-10 -5 0 5 10

Fixing lack of cumulus
momentum drag?

]

Positive values over NH land expected. /
Problem: large negative values over tropical land near convection.

May reduce wind bias in tropical troposphere, but for “Wrong Reason’.

Assimilation tries to use free parameter to fix ALLL model problems

/home/jla/dart/amwg_mar05/dart_amwg.fm March 1, 2005




The long lost g whiz slide

What planet are we really on?

Estimating earth’s gravity with DART and CAM.

Don’t expect to get the right answer.




DART: Novel, General Solutions for Nonlinear, Non-Gaussian Problems
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Low-Order Tracer Advection Model Example

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Wind Velocity Tracer Concentration
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s [ 650
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Location Location

Concentration can be
zero far from source.

Constant
Source.

i Ein

Data
pAREE:
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T estk




Low-Order Tracer Advection Model Example

Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.
Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

Analysis: Tracer Concentration 14

3 T
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o |+ Epsemble Mean : has large bias for tracers.
| l it “ fate |
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Each grid point has Lorenz-96 state, tracer concentration, tracer source/sink.

Low-Order Tracer Advection Model Example

Multiple of state treated as wind, conservatively advects tracer.
Example: single time constant source at grid point 1.

3

Analysis: Tracer Concentration 14
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Analysis: Tracer Concentration 36
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New method is (nearly)
unbiased.

Can go to all zeros.

No negative values.



Low-Order Tracer Advection Model: Source Estimation

If sources are unknown, can also estimate them.

Lorenz_96_Tracer_Advection source varnum 1 Ensemble Members of preassim.nc
T T T T T T T T

& =menemesen | EX@Mple: single time constant source at point 1.

model days* (1000 tmestaps) Systematic error becomes a huge problem.

Lorenz_96_Tracer_Advection source varnum 2 Ensemble Members of preassim.nc
T T T T T T T T

- Ensemble Members (80)
Ensemble Mean

True State

k + Prior choices bias results.

—
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| but apply to any parameter estimation
method.
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Summary: Parameter Estimation in CESM

DART can provide parameter estimation for most CESM models (with some additional coding)
New DA advances can improve estimates (including uncertainty)

Parameter estimation can be effective when used carefully with:
« Methods for avoiding ensemble collapse (if desired)

« Appropriately constructed prior ensembles

* Appropriate parameter bounds

All parameter estimation methods:

« Can only answer specific questions

« Cannot estimate ‘true’ values of single parameters when others are wrong
« Cannot escape the information limits of model and observation errors

DART Webpage: dart.ucar.edu
Email the DART team: dart@ucar.edu



mailto:dart@ucar.edu
mailto:dart@ucar.edu

Questions?
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