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MOTIVATION 

❖ Many processes must be represented in an 
    Earth System Model (ESM) atmosphere. 
    (e.g., figure to right)

❖ Each process is represented by equations, and each equation has many parameters.

❖ Some parameters are known (e.g., Coriolis parameter, acceleration due to gravity); 
most are not! (e.g., parameter for conversion of cloud drops to rain drops, relative 
humidity threshold in a large grid box for determining if a cloud should form). 

❖ How one sets all unknown parameters impacts ESM skill & climate projection. 

Rio et al. 2019



The Goal: Determine all combinations of free parameters (100s) that 
yield Earth System Model (ESM) configurations whose mean states 
look like Earth’s. Why?  Because then we can run all 

combinations to see the PDF of climate 
projections knowing that individual model 
mean-states are realistic.  

For a designed model ensemble that is 
more constrained by the available 
information, is the spread in projections 
similar to the CMIP model spread (and 
can we learn from it)?

In a perturbed parameter ensemble (PPE) 
that is not constrained by any 
observations, many members are not 
Earth-like, which makes it harder to learn 
realistic spread from the ensemble!



The Goal: Determine all combinations of free parameters (100s) that 
yield Earth System Model (ESM) configurations whose mean states 
look like Earth’s.

Why might the state space yield a 
number of diverse parameter 
combinations giving desired output 
(i.e., equifinality)?  

In part, because so many parameters 
are being explored (i.e., more degrees 
of freedom).

…and also because of uncertainty 
(e.g., in observations, in the emulator).



Framework applied to GISS climate model atmosphere

• 45 parameters, 36 observational climatologies to try to match.

• Markov-Chain Monte Carlo (MCMC) can be used to find all parameter 
combinations, but is prohibitively expensive (requires 10k – 10M 
sampling iterations)



• We can train a machine learning “emulator” or  “model surrogate” to 
replicate the model’s mapping of parameter perturbations to outputs.

Framework applied to GISS climate model atmosphere



• By replacing model with the machine learning surrogate, we can do 
MCMC with low computational cost

Framework applied to GISS climate model atmosphere



Earth System Model (ESM) Parameter Calibration Efforts
Example: accounting for observational uncertainty in 
the emulation of climate model error.  
Examples below using two surface rainfall and column 
integrated water vapor products.  Note discrepancies, which 
are accounted for quantitatively in the model penalty (i.e., 
climate error) functions.

 
N=2

Rainfall Rate (mm/month), etc.

Elsaesser, van-Lier Walqui, Q. Yang, & GISS 

Observation 1 Observation 2



m

Finds diversity in parameter 
combinations that retain the 
default improvement in clouds 
(e.g., stratocumulus clouds).

What did ML tuning do relative to 
improved default physics?  First, it 
provides alternate parameter 
settings yielding similar mean 
states. 

Sometimes ML parameter 
estimation can fix a problem that 
Latin Hypercube (or human) 
sampling of parameters could not 
(e.g., shallow cumulus, Amazon 
precip bias reduced by 50%)

It does all this while minimizing SW 
and LW radiation biases.  

Lessons Learned from GISS ESM Atmosphere Parameter Estimation Efforts



Tackling Error in Obs.: If 
error in observations are not 
accounted for, histograms of 
“optimal” parameter 
combinations are sometimes 
different (e.g., RH for cloud 
formation, or ice fall speed).  
So, what we assume for error 
is important!

Results2: Sometimes, 
we can never match 
targets.  Example: for 
stratiform rainfall 
fraction, or the amount 
of large-scale (light) 
precipitation that falls 
relative to total precip.
Structural problem! 

Assume no errors

Assume errors in 
observations

Lessons Learned from GISS ESM Atmosphere Parameter Estimation 
Efforts

Results1: Process
matches obs. target cross-hairs 
well (posterior green dots), 
much better than random Latin 
Hypercube search of 
parameters (black dots).  
Example: LW cloud radiative 
forcing and net radiation at TOA.
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e.g., model surface wind as a function of two microphysics parameters (points in a); GISS model surrogate model (a neural 
net; NN) filling the empty space also shown (points in b).  The NN “cloud of points” in (b) is flatter than in (a), denoting NN 
error.  Ongoing work is to improve the NN so it can re-produce any model field!   

Improving emulator for next round ESM atmosphere parameter estimation 

The uncertainty in the posterior distribution also contains 
the uncertainty from the emulator;
What is an ideally good emulator?

Avoid overfitting
Be able to estimate the uncertainty
The estimated uncertainty should vary based on the 
provided parameter values

?



Improve the performance of the emulator
• Explore different kinds of structures in the data

• 1. Features that can be easily identified on a biplot (below)

• 2. The interaction of these variables (3D image below)

• 3. Local variabilities (right), e.g., 

• When some other variables are within certain range, the 
pattern of  StreamFunction_DJF with respect to dcs and 
vf_multi starts to look different from the overall trend

• Subset A (144 pts):  0.2 < scale_cn < 0.5

• Subset B (153 pts):  0.5 < ni_homfree < 0.8

• Subset C: All other points

Surface based on complete 
dataset (0.70; shown before)

Surface based on 
subset A (0.58)

Surface based on 
subset B (0.57)

Surface based on 
subset C (0.74)

What’s next?

Find ways to model such characteristics 
while avoid overfitting

Estimate the uncertainty



Conclusions
• The current framework could help find multiple possible configurations (different 

combinations of parameter values) to run ESMs with similar outputs. For 
different ESM parameters but similar ESM climatologies, how does this impact 
projections?

• Some observations can be well fitted by the ESMs based on the configurations 
derived from this workflow, but some are not (i.e., structural error exists!).

• Observational error in the observation is critical and may greatly affect the 
posterior distribution of the parameters.

• We are working on improving the performance of the emulator by exploring local 
structures (i.e., input and output relationship) of the training data.

• We hope that these lessons could be informative to the ESM parameter 
estimation community, and look forward to collaborate with CAM. 


