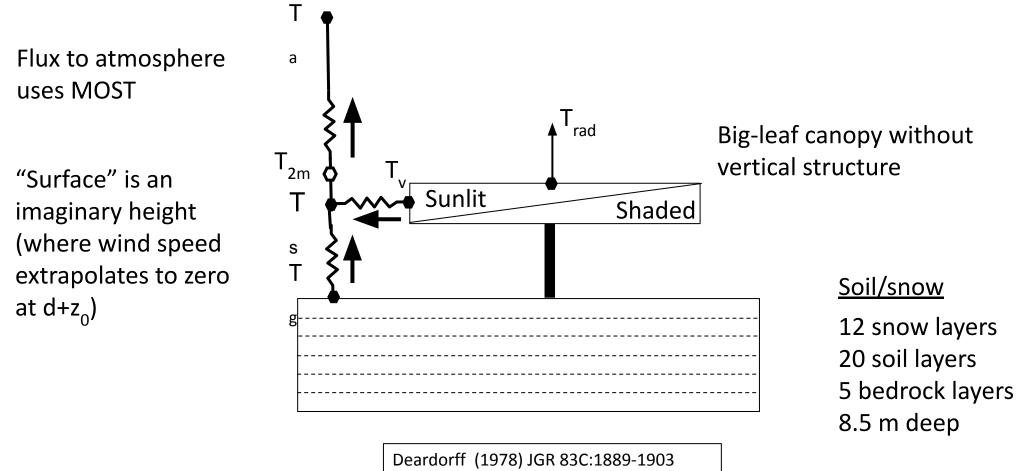


Land-atmosphere flux exchanges and the land surface climate


Gordon Bonan National Center for Atmospheric Research Boulder, Colorado, USA

28th Annual CESM Workshop 12 June 2023

NCAR is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977 Where does the atmosphere stop and the land begin?

CLM5 perspective of the land surface

Dickinson et al. (1986) NCAR/TN-275+STR Dickinson et al. (1993) NCAR/TN-387+STR

Monin-Obukhov similarity theory

$$V_a = \frac{u_*}{k} \left[\ln \left(\frac{z_{atm,m} - d}{z_{0m}} \right) - \psi_m \left(\frac{z_{atm,m} - d}{L} \right) + \psi_m \left(\frac{z_{0m}}{L} \right) \right]$$

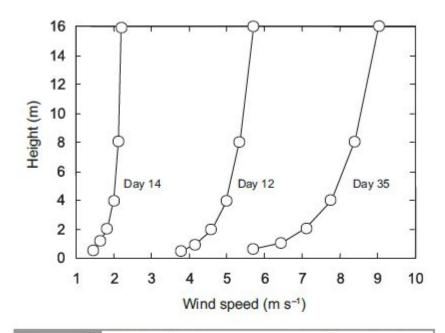


Figure 6.1 Wind profile above sparse grassland in southeastern Australia under near-neutral conditions measured at 1630 hours on days 12, 14, and 35 of the Wangara experiment. Data from Clarke et al. (1971) and reproduced from Bonan (2016).

Monin-Obukhov similarity theory

$$V_{a} = \frac{u_{*}}{k} \left[\ln \left(\frac{z_{atm,m} - d}{z_{0m}} \right) - \psi_{m} \left(\frac{z_{atm,m} - d}{L} \right) + \psi_{m} \left(\frac{z_{0m}}{L} \right) \right]$$
$$\theta_{atm} - \theta_{s} = \frac{\theta_{*}}{k} \left[\ln \left(\frac{z_{atm,h} - d}{z_{0h}} \right) - \psi_{h} \left(\frac{z_{atm,h} - d}{L} \right) + \psi_{h} \left(\frac{z_{0h}}{L} \right) \right]$$
$$q_{atm} - q_{s} = \frac{q_{*}}{k} \left[\ln \left(\frac{z_{atm,w} - d}{z_{0w}} \right) - \psi_{w} \left(\frac{z_{atm,w} - d}{L} \right) + \psi_{w} \left(\frac{z_{0w}}{L} \right) \right]$$

Definitions:
z_{atm} is the height corresponding to V _a , θ_{atm} , and q_{atm}
$u(z) = 0 at z_0 + d$
$\theta(z) = \theta_s \operatorname{at} z_0 + d$
$q(z) = q_s at z_0 + d$

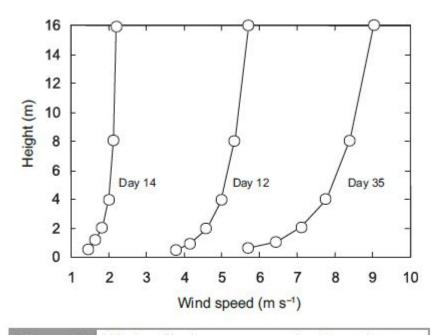
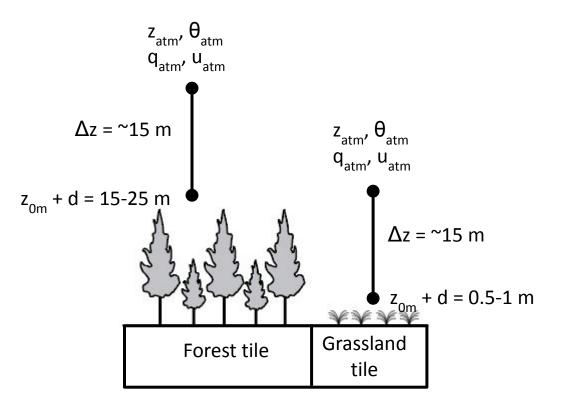
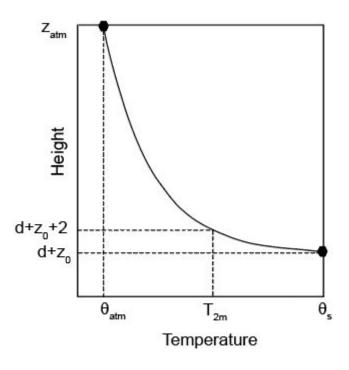


Figure 6.1 Wind profile above sparse grassland in southeastern Australia under near-neutral conditions measured at 1630 hours on days 12, 14, and 35 of the Wangara experiment. Data from Clarke et al. (1971) and reproduced from Bonan (2016).


Monin-Obukhov similarity theory

$$V_{a} = \frac{u_{*}}{k} \left[\ln \left(\frac{z_{atm,m} - d}{z_{0m}} \right) - \psi_{m} \left(\frac{z_{atm,m} - d}{L} \right) + \psi_{m} \left(\frac{z_{0m}}{L} \right) \right]$$
$$\theta_{atm} - \theta_{s} = \frac{\theta_{*}}{k} \left[\ln \left(\frac{z_{atm,h} - d}{z_{0h}} \right) - \psi_{h} \left(\frac{z_{atm,h} - d}{L} \right) + \psi_{h} \left(\frac{z_{0h}}{L} \right) \right]$$
$$q_{atm} - q_{s} = \frac{q_{*}}{k} \left[\ln \left(\frac{z_{atm,w} - d}{z_{0w}} \right) - \psi_{w} \left(\frac{z_{atm,w} - d}{L} \right) + \psi_{w} \left(\frac{z_{0w}}{L} \right) \right]$$

The atmospheric reference height received from CAM z'_{atm} is assumed to be the height above the surface as defined by the roughness length z_0 plus displacement height d:

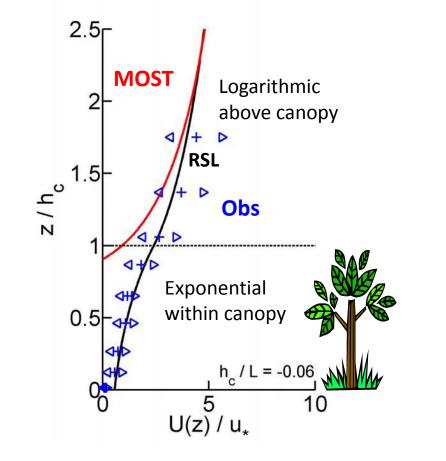

 $z_{atm} = z'_{atm} + (z_{0m} + d)$

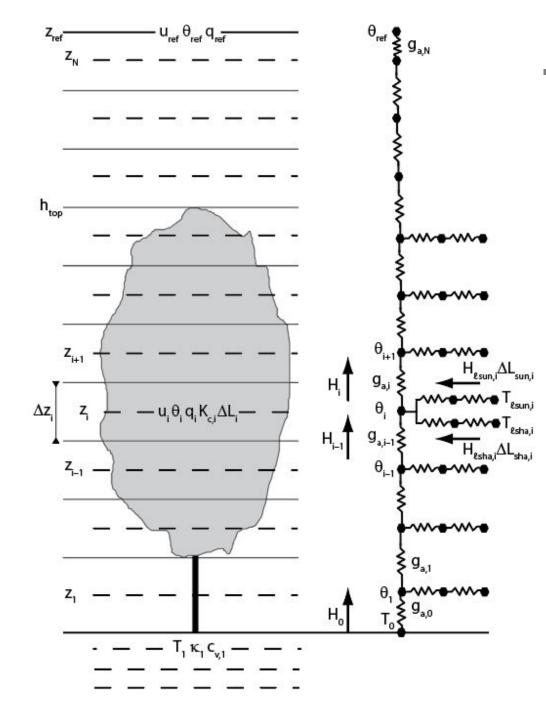
 z_{om} +d is the theoretical height at which u(z)=0

Surface quantities

"2-m" is defined as 2 m above the apparent sink ($z_0 + d$) to diagnose T_{2m} and q_{2m}

"10-m wind" is defined as 10 m above the apparent sink for momentum $(z_0 + d)$:

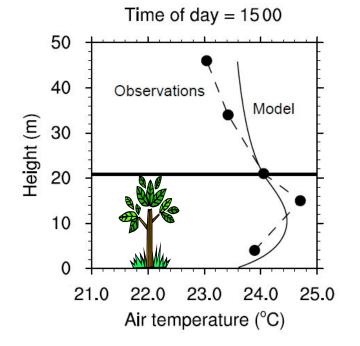

$$\mathbf{u}_{10m} = V_a - \frac{u_*}{k} \left[\ln\left(\frac{z_{atm, m} - d}{10 + z_{0m}}\right) - \psi_m\left(\frac{z_{atm, m} - d}{L}\right) + \psi_m\left(\frac{10 + z_{0m}}{L}\right) \right]$$


Roughness sublayer theory

7

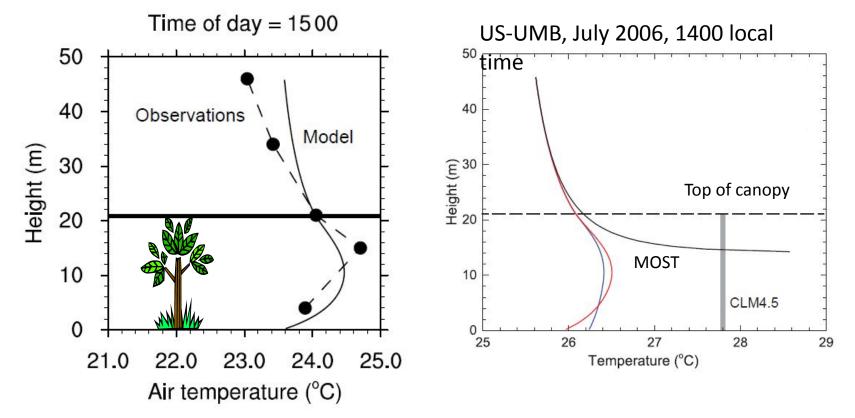
CLM (and most other models) use MOST, which fails above and within tall plant canopies

CSIRO flux station near Tumbarumba

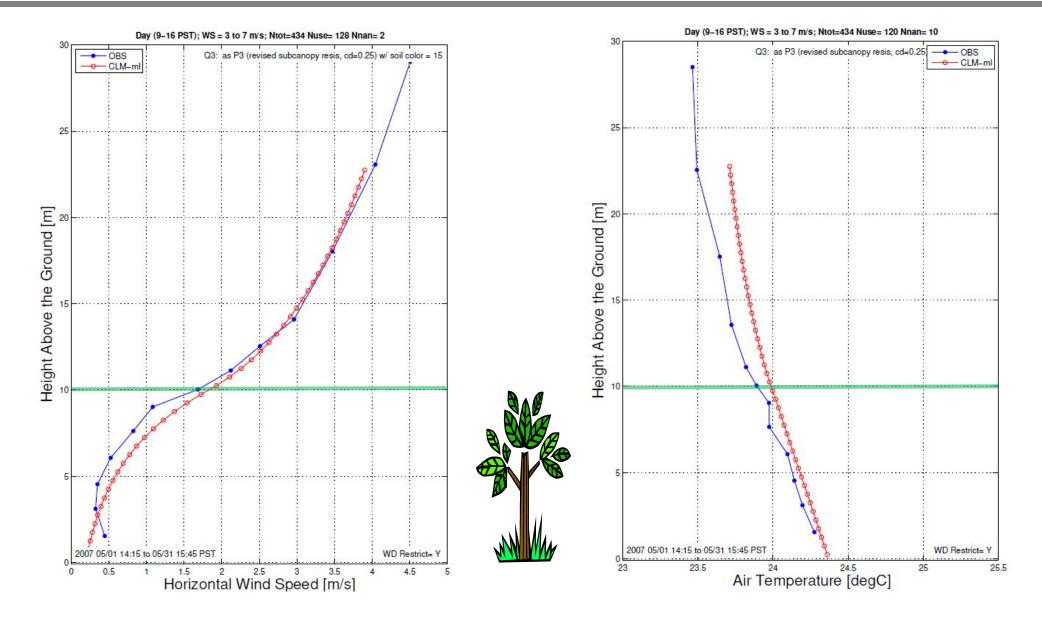


Multilayer canopy

The physics and physiology of the multilayer canopy are simpler and more consistent with theory (and directly observable) than is the CLM5 big-leaf canopy (with many ad-hoc parameterizations and much technical debt), and it also enables new science


Bonan, Williams et al. (2014) *Geosci. Model Dev.*, 7, 2193-2222 Bonan, Patton, et al. (2018) *Geosci. Model Dev.*, 11, 1467-1496 Bonan, Patton, et al. (2021) *Agric. For. Meteorol.*, 306, 108435

University of Michigan Biological Station


Within canopy temperatures

US-UMB, July 2006 (deciduous broadleaf forest)

Bonan, Patton, et al. (2018) *Geosci. Model Dev.*, 11, 1467-1496; (2021) *Agric. For. Meteorol.*, 306, 108435


Vertical profiles within and above a walnut orchard

10

Bonan, Burns & Patton (unpublished)

Land in Earth system models

Where does the atmosphere stop and the land begin? Or, what is the "surface" in a land surface model?

	CAM
CLM-ml	
30 m	~30 m
	~15 m
0 m	0 m