CESM-ocean-atmosphere flux exchange-some background on flux computations

Justin Small, Gustavo Marques, Frank Bryan, Alper Altuntas Acknowledging
Bill Large, Gokhan Danabasoglu, Brian Kauffman
Dan Fu (TAMU), Jim Edson (WHOI), David Richter (Uni. Notre Dame)
NCAR

Main points

- Ocean-atmosphere fluxes based on Monin-Obukhov similarity theory (MOST) and analytical forms of exchange coefficients from Large and Yeager (2004, 2009).
- It has been extensively used for model lowest-level variables centered at $\sim 55 \mathrm{~m}$ (coupled) and 10 m (forced-ocean simulations).
- Now being applied at 10 m or 20 m in CESM3 development cases.
- Surface waves are not explicitly included in the surface flux calculations.
- High wind speed regime is an area of uncertainty - how to modify the drag coefficient at extreme winds?
- Libraries of various different flux schemes exist
- E.g. Brodeau software package Aerobulk
- Flux parameterization not developed for short time-scale (e.g.minutes) or short length-scale (kms)
- Field measurements of turbulence averaged e.g. over 10s of minutes
- This is an issue for ultra high-resolution models

Air-sea exchange fluxes of momentum , heat, moisture

Momentum FluxSensible Heat flux Latent heat flux

$\begin{aligned} & \left.\text { - Turbulent quantities }|\underline{\tau}|=\sqrt{\left(\rho \overline{u^{\prime} w^{\prime}} 2\right.}+\rho \overline{v^{\prime} w^{\prime}}\right)\end{aligned} \quad Q_{h}=\rho c_{p} \overline{\theta^{\prime} w^{\prime}} \quad Q_{L}=\rho L_{v} \overline{q^{\prime} w^{\prime}}$

- Friction velocity etc form $\quad \tau=\rho u^{* 2} \quad Q_{h}=\rho c_{p} u^{*} \theta^{*} \quad Q_{L}=\rho L_{\nu} u^{*} q^{*}$
- Bulk flux form
$\tau=\rho C_{D} U^{2}$
$Q_{h}=\rho c_{p} C_{H} U(\theta-S S T) \quad Q_{L}=\rho L_{v} C_{E} U(q-S S Q)$
SSQ=
Based on variables easily measured

Main iteration loop of Large and Yeager 2004, 2009

Neutral drag coefficients at 10 m empirically defined (Large and Pond, Large and Yeager)

$$
\begin{equation*}
1000 C_{D}=\frac{2.70(\mathrm{~m} / \mathrm{s})}{U_{N}(10 \mathrm{~m})}+.142+\frac{U_{N}(10 \mathrm{~m})}{13.09(\mathrm{~m} / \mathrm{s})} \tag{6a}
\end{equation*}
$$

$$
\begin{equation*}
1000 C_{E}=34.6 \sqrt{C_{D}} \tag{6b}
\end{equation*}
$$

$$
\begin{equation*}
1000 C_{H}=18.0 \sqrt{C_{D}}, \quad \text { stable } \zeta>0 \tag{6c}
\end{equation*}
$$

$$
\begin{equation*}
=32.7 \sqrt{C_{D}}, \quad \text { unstable } \zeta \leq 0 \tag{6d}
\end{equation*}
$$

Step 3. Shift wind to 10 m and neutral stability, temp and humidity to wind height

$$
\begin{gather*}
U_{N}(10 m)=|\Delta \vec{U}|\left(1+\frac{\sqrt{C_{D}}}{\kappa}\left[\ln \left(z_{u} / 10 m\right)-\psi_{m}\left(\zeta_{u}\right)\right]\right)^{-1} \tag{9a}\\
\theta\left(z_{u}\right)=\theta\left(z_{q}\right)-\frac{\theta^{*}}{\kappa}\left[\ln \left(\frac{z_{q}}{z_{u}}\right)+\psi_{h}\left(\zeta_{u}\right)-\psi_{h}\left(\zeta_{\theta}\right)\right] \tag{9b}\\
q\left(z_{u}\right)=q\left(z_{q}\right)-\frac{q^{*}}{\kappa}\left[\ln \left(\frac{z_{q}}{z_{u}}\right)+\psi_{h}\left(\zeta_{u}\right)-\psi_{h}\left(\zeta_{q}\right)\right] . \tag{9c}
\end{gather*}
$$

Step 1. Define turbulênt scales u* etc using neutral coefficients and bulk variables

$$
\begin{gather*}
u^{*}=\sqrt{\rho_{a}^{-1}}|\vec{\tau}|=\sqrt{C_{D}}|\Delta \vec{U}| \tag{7a}\\
t^{*}=\frac{Q_{H}}{\rho_{0} c_{p} u^{*}}=\frac{C_{H}}{\sqrt{C_{D}}}\left[\theta\left(z_{\theta}\right)-S S T\right] \tag{7b}\\
q^{*}=\frac{E}{\rho_{a} u^{*}}=\frac{C_{E}}{\sqrt{C_{D}}}\left[q\left(z_{q}\right)-q_{v a t}\left(q_{1}, q_{2}, S S T\right)\right] \tag{7c}
\end{gather*}
$$

Step 4. Get new neutral coefficients from (6) then shift to measurement height and stability

$$
\begin{gather*}
C_{D}\left(z_{u}, \zeta\right)=C_{D}\left(1+\frac{\sqrt{C_{D}}}{\kappa}\left[\ln \left(z_{\mathrm{w}} / 10 m\right)-\psi_{m}\left(\zeta_{\mathrm{w}}\right)\right]\right)^{-2} \tag{10a}\\
C_{H}\left(z_{u}, \zeta\right)=C_{H} \sqrt{\frac{C_{D}\left(z_{u}, \zeta\right)}{C_{D}}}\left(1+\frac{C_{H}}{\kappa \sqrt{C_{D}}}\left[\ln \left(z_{u} / 10 m\right)-\psi_{h}\left(\zeta_{\mathrm{u}} u\right]\right)^{-1}\right. \tag{10b}\\
C_{E}\left(z_{u}, \zeta\right)=C_{E} \sqrt{\frac{C_{D}\left(z_{u}, \zeta\right)}{C_{D}}}\left(1+\frac{C_{E}}{\kappa \sqrt{C_{D}}}\left[\ln \left(z_{u} / 10 m\right)-\psi_{h}\left(\zeta_{\mathrm{u}}\right)\right]\right)^{-1} \tag{10c}
\end{gather*}
$$

Step 5. Use the new coefficients in (10) to compute new turbulent scales in (7). Then go back to step 2

Step 2b. Get empirical functions PSIM(zeta), PSIH(zeta) etc

$$
U(z)=U o+\frac{u *}{\kappa}\left\{\ln \frac{z}{z_{0}}-\psi_{m}\right\} \quad \theta(z)=S S T+\frac{\theta *}{\kappa}\left\{\ln \frac{z}{z_{\theta}}-\psi_{h}\right\} \quad \quad \mathrm{q}(z)=\operatorname{SSQ}+\frac{q^{*}}{\kappa}\left\{\ln \frac{z}{z_{q}}-\psi_{h}\right\}
$$

NCAR

UCAR

Alternative Flux schemes

- COARE (Fairall et al. 1996, 2003, Edson et al. 2013)
- ECMWF (Beljaars 1995, 1997)
- WRF (Zhang and Anthes 1982,
- All Iterate on roughness length
- They include "cool skin" and diurnal warm layer
- All use standard stability profiles (PSIM,PSIH etc.) based on field measurements (e.g. Businger-Dyer) but differ in other aspects

Roughness length a function of wind speed or wave state via Charnock coefficient

$$
\begin{equation*}
z_{0}^{\text {rough }}=\alpha \frac{u_{*}^{2}}{g} \tag{8}
\end{equation*}
$$

where α is Charnock coefficient, and g is the gravita-
Relationship of roughness length and drag coefficient

$$
z_{0}=10 \exp \left(\frac{-\kappa}{\sqrt{C_{D n}}}\right)
$$

Skin temperature question/diurnal cycle

Github library of flux routines by L. Brodeau and collaborators

AeroBulk is a FORTRAN90-based library and suite of tools (including a C++ interface) that feature state of the art parameterizations to estimate turbulent air-sea fluxes by means of the traditional aerodynamic bulk formulae.

These turbulent fluxes, namely, wind stress, evaporation (latent heat flux) and sensible heat flux, are estimated using the sea surface temperature (bulk or skin), and the near-surface atmospheric surface state: wind speed, air temperature and humidity. If the cool-skin/warm-layer schemes need to be called to estimate the skin temperature, surface downwelling shortwave and longwave radiative fluxes are required.

Contributors 3

Languages

- Fortran 81.1\% - Python 15.0\%
- Shell 1.7\% - C++ 1.6\%
- Makefile 0.6%

Currently, in AeroBulk, 5 bulk parameterizations are available to compute $C_{D_{1}} C_{E}$, and C_{H} used in the bulk formula:

- COARE v3.0 (Fairall et al., 2003)
- COARE v3.6 (Edson et al., 2013 + Chris Fairall, private communication, 2016)
- ECMWF (IFS (Cy40) documentation)
- ANDREAS (Andreas et al., 2015)
- NCAR (Large \& Yeager 2004, 2009)

Role of surface waves

On the Uxchange of Momentum over the Open Ocean

James B. Eldon,* Venkata Jampana,* Robekt A. Weler, ${ }^{+}$Sebastlen P. Bigorke, ${ }^{*}$ Dean Vickers, ${ }^{\text {an }}$ AND HANS HERSBACH**

Lastly, the results argue that it is difficult to improve upon a wind speed-dependent parameterization under any conditions. This may simply be due to the fact that wind-driven waves support the majority of the surface stress, and the modulation of the surface stress by longer waves is a second-order effect under most conditions. Furthermore, the inclusion of additional dependent variables with their own measurement uncertainties in the bulk flux algorithm tends to increase the uncertainties in the fluxes. Therefore, the potential improvements from the wave age- and wave slopedependent parameterizations may be better utilized in applications where higher quality wave measurements are available.

F1G. 9. Inverse wave age plotted vs relative wind speed. (top) The individual data from each experiment, and (middle) the data averaged over wind speed bins. The RASEX data are not included in this average. The dashed black line represents the inverse wave age commonly associated with fully developed seas. The dashed-dotted line is a linear fit to the averaged data, while the solid line is a third-order fit. (bottom) As in Fig. 6, but with the addition of the green line representing the function derived by ECMWF as given by (20), and the red line that combines the third-order fit with (15).

NCAR
 UCAR

WW3 Coupling in CESM

Legacy Coupling:

- Langmuir multiplier (lamult) passed to OCN and used within CVMix to enhance KPP mixing.

New Coupling:

- A number of stokes drift bands passed to OCN for WAB eqn computations that modifies MOM6 momentum eqn. A newer KPP mixing enhancement parameterization is also being developed.

Extreme wind speed regime

- Important especially for high-resolution models
- Is drag coefficient capped or reduced at high wind speeds?
- Surface waves are very important here
- Misalignment of stress and wind vectors, wind and wave
- Temporal averaging for turbulent statistics ?

Uncertainty in drag coefficient at high winds

Laboratory experiments

Curcic and Haus, 2020, Revised Estimates of Ocean Surface Drag in Strong Winds. GRL https://doi.org/10.1029/2020GL087647

From dropsonde data

Richter et al. 2021. Potential Low Bias in High-Wind Drag Coefficient Inferred from Dropsonde Data in Hurricanes. JAS, https://doi.org/10.1175/JAS-D-20-0390.1

