

Examining Parameter • Uncertainty Through Large Cloud-Based Ensembles

Rob von Behren jrvb@google.com Aaron Sonabend <u>asonabend@google.com</u>

CESM WORKSHOP 2023 Parameter Estimation Cross Working Group June 12, 2023

CESM and Google Climate & Energy

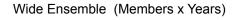
Google Research

Aspirational goals: answer questions like

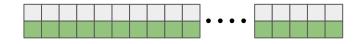
- What global heating mitigation work should Google do?
- How much impact will project A have vs project B?
- (Probably both unknowable but what *can* we learn?)

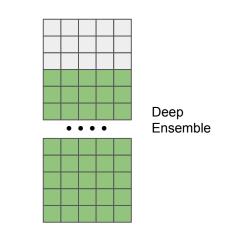
Challenges

- Compute environment different than typical clusters for CESM
- Lots of uncertainty in CESM outputs


CESM on Google Cloud

Diffs vs dedicated cluster


- Best price w/ preemptible VMs
 - Fewer network guarantees
 - Failed VMs stall MPI
- \Rightarrow Focus on single-machine simulations


Ensemble shape: wide vs deep

- Why?
 - On one VM, 1° fixed SST: ~50 days for 100-year sim
 -but can easily scale to 1000s of VMs
- Early results: get same stats if we are careful**
- Good platform for exploring uncertainties!

Google Research

Burn-in year (data discarded)

Contrail Impact

Google Research

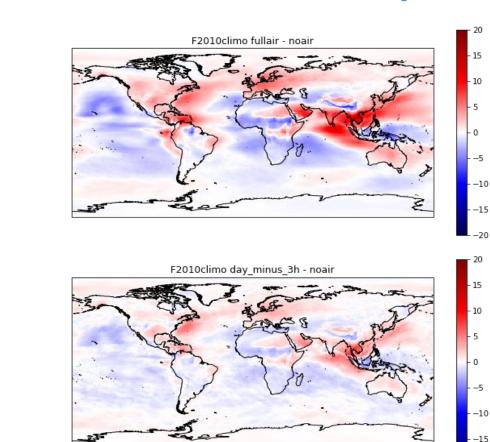
What is the climate impact from contrails?

How big are the error bars on contrail ERF?

Which mitigation strategies are most effective?

Sim setup

Contrail Impact


- CAM 6.3; Fixed SST
- Scenarios
 - \circ No aviation
 - Full aviation (FA)
 - Mitigation Strategy (MS)

Measure

 Radiative imbalance at top of atmosphere (TOA)

Explorations last ~4 months

- 83 ensembles
- >10k sim years

Google Research

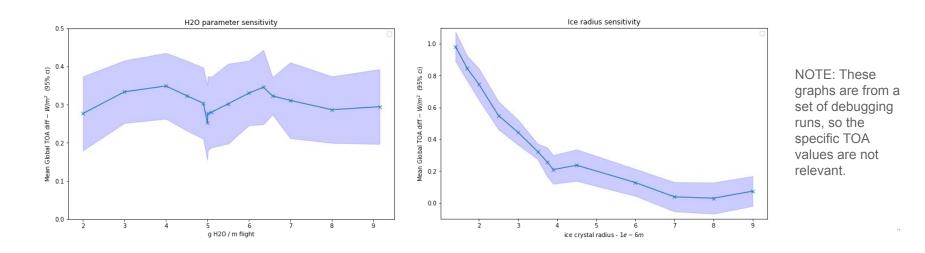
Hat tip to Andrew Gettelman and Jack Chen

-20

'OA diff - W/m

OA diff - W/n

Contrail ERF Error Bars


Google Research

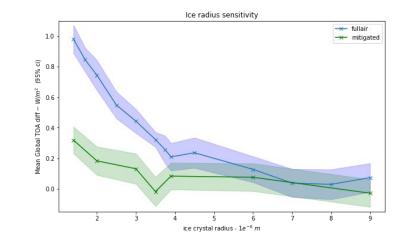
Variation among ensemble members (aleatoric uncertainty)

- Large SEM vanquished via sqrt(N)
- Easy to run large ensembles

Are the contrail module parameters correct? (epistemic uncertainty)

• Some choices have a big impact on computed TOA!

Contrail Mitigation Effectiveness


Problem: Baseline warming depends on params

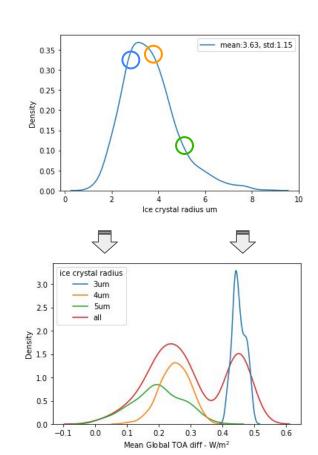
Heavyweight Solution: Many ensembles

- Pick several sets of params
- Run FA and MS ensembles for each
- Compare %mitigated across param vals

More Problems

- Compute costs
- How to compare?

Google Research


Better Solution: MC Sampling + ANOVA

Intuition

- Pick a reasonable distribution for each param
- Sample params & run sims to get TOA
- Use analysis of variance
 - Extract the experimental effect
 - ...in spite of param diffs

Evaluating mitigation

- Use effect ratio to compare across TOA baselines
- Bootstrap sampling to analyze variance
- 95% CI of ratio < 1.0 ⇒ mitigation works!

Google Research

Regression-based Variance Analysis

Generate Monte-Carlo dataset¹: $\{(TOA_i, FA_i, r_i)\}_{i=1}^n$

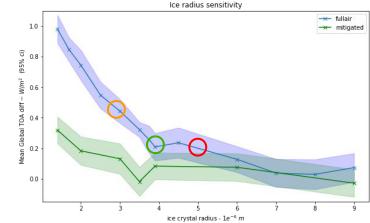
- 1) Sample ice radius $r_i \sim f_r$
- 2) Run CESM under baseline ($FA_i=0$) or full air traffic ($FA_i=1$, r_i) scenarios to get TOA_i

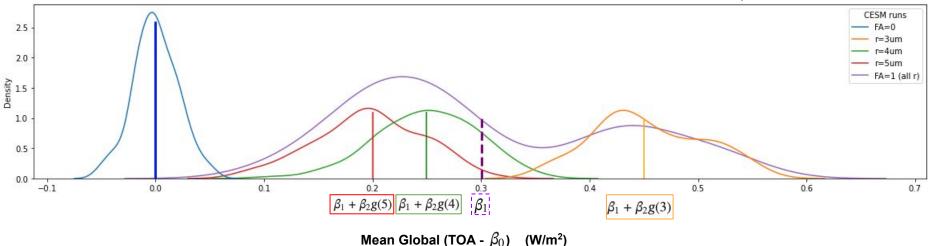
Estimate full aviation effect β_1 , with any g() where E[g(r)] = 0

```
E[TOA|FA, r] = \beta_0 + FA\{\beta_1 + \beta_2 g(r)\}
```

Note:

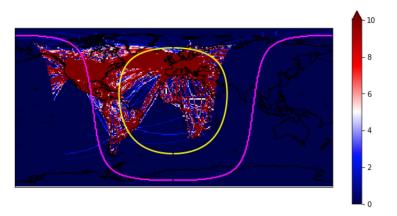
- Baseline TOA is β_0 since $E[TOA|FA = 0] = \beta_0$
- Fullair effect is β_1 since $E_r \{ E[TOA | FA = 1, r] \} = \beta_0 + \beta_1$


1. For simplicity, this example uses a single ice radius parameter, but the method applies for vector-valued *r*


Regression-based Variance Analysis

Google Research

 $E[TOA|FA, r] = \beta_0 + FA\{\beta_1 + \beta_2 g(r)\}$


Combine simulations with different r_i to estimate β_1 .

Mitigation Strategies

What about turning off air traffic only at night?

Similar MC approach can be used to generate dataset: $\{(TOA_i, MS_i, r_i)\}_{i=1}^m$

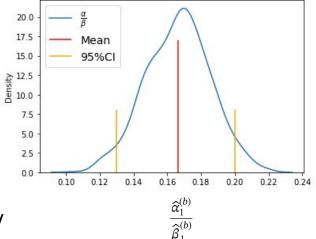
Estimate effect of mitigation strategy with:

$$E[TOA|MS, r] = \alpha_0 + MS\{\alpha_1 + \alpha_2 h(r)\}, E[h(r)] = 0$$

Air Traffic Effect Ratio

How do different mitigation strategies compare?

Mitigation strategy vs. full air traffic $\frac{E_r\{E[TOA|MS = 1, r] - E[TOA|MS = 0]\}}{E_r\{E[TOA|FA = 1, r] - E[TOA|FA = 0]\}} = \frac{\alpha_1}{\beta_1}$


How do we account for parameter uncertainties?

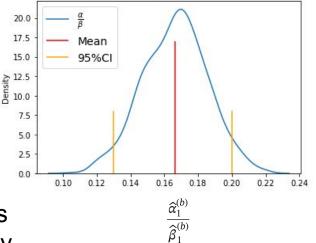
Bootstrap for handling epistemic uncertainty:

1. Sample CESM runs from $\begin{cases} (TOA_i, FA_i, r_i) \}_{i=1}^n & \frac{20.0}{17.5} \\ \{(TOA_j, MS_j, r_j) \}_{j=1}^m & \frac{10.0}{15.0} \end{cases}$

2. Estimate
$$\widehat{\alpha}_{1}^{(b)}, \ \widehat{\beta}_{1}^{(b)}, b = 1, \dots, B$$

3. Compute ratio $\left\{\frac{\widehat{\alpha}_{1}^{(b)}}{\widehat{\beta}_{1}^{(b)}}\right\}_{b=1}^{B}$ and quantiles for uncertainty

Certainty from Uncertainty?


Google Research

Compute infrastructure

- Wide parallelization allows rapid exploration
- Short sims good enough (for some cases)

Variance analysis

- Allows conclusions about mitigation effectiveness
 - In spite of aleatoric and epistemic uncertainty
- Reduces compute requirements
 - eg O(500) ensembles instead of O(5000)

