The Sensitivity of the Global Mean Climate to Parameterized Momentum Flux in an Experimental Version of CAM6-CLUBB(X)

Kyle M. Nardi Colin M. Zarzycki Vincent E. Larson George H. Bryan

CESM Workshop Tuesday 13 June 2023

Allows for upgradient fluxes

- Allows for upgradient fluxes
 C₆, C₇, and C_{uu_shr} are all tunable parameters in CLUBB

- Allows for upgradient fluxes
- C_6 , C_7 , and C_{uu_shr} are all tunable parameters in CLUBB
- The τ term in the return-to-isotropy adjustment can also be tuned using the new regime-specific formulation

We target several notable mean state biases in CAM6-CLUBBX

Kyle M. Nardi CESM Workshop-June 2023

PennState

We target several notable mean state biases in CAM6-CLUBBX 10-year simulations

Baseline Annual Surface Stress Bias

10-year simulations with baseline CLUBBX parameter settings

We target several notable mean state biases in CAM6-CLUBBX

Baseline Annual Surface Stress Bias

10-year simulations with baseline CLUBBX parameter settings

Baseline surface stress is too high over the Southern Ocean

We target several notable mean state biases in CAM6-CLUBBX 10-year simulations with

Baseline Annual Surface Stress Bias

baseline CLUBBX

Min = -71.60 Max = 64.74

Kyle M. Nardi CESM Workshop-June 2023

99

We target several notable mean state biases in CAM6-CLUBBX 10-year simulations with

Baseline Annual Surface Stress Bias

to high bias in low cloud fraction

Min = -71.60 Max = 64.74

kmn182@psu.edu

baseline CLUBBX

Kyle M. Nardi CESM Workshop-June 2023

PennState

Problem: CLUBB contains many tunable parameters that could be adjusted

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

Solution: The Morris One at a Time (MOAT) method

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

Solution: The Morris One at a Time (MOAT) method

Start with a set of tunable input parameters

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

- Start with a set of tunable input parameters
- Run model multiple times with unique combinations of parameter values

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

- Start with a set of tunable input parameters
- Run model multiple times with unique combinations of parameter values
- From one run to the next, change the value of only one input parameter

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

- Start with a set of tunable input parameters
- Run model multiple times with unique combinations of parameter values
- From one run to the next, change the value of only one input parameter
- Analyze the difference in model output between runs

Problem: CLUBB contains many tunable parameters that could be adjusted

Question: How can we efficiently screen numerous input parameters to identify those that merit additional analysis?

- Start with a set of tunable input parameters
- Run model multiple times with unique combinations of parameter values
- From one run to the next, change the value of only one input parameter
- Analyze the difference in model output between runs
- Repeat for **10** different initial combinations of input parameter values

Kyle M. Nardi CESM Workshop-June 2023

PennState

• 1º horizontal resolution, 58 vertical levels run over 72 hours

- 1º horizontal resolution, 58 vertical levels run over 72 hours
- PBL turbulence parameterized using CLUBBX

- 1º horizontal resolution, 58 vertical levels run over 72 hours
- PBL turbulence parameterized using CLUBBX
- Atmosphere (ERA5), ocean/ice (NOAAOI), land (ERA5) initialized using Betacast (<u>https://github.com/zarzycki/betacast</u>)

- 1º horizontal resolution, 58 vertical levels run over 72 hours
- PBL turbulence parameterized using CLUBBX
- Atmosphere (ERA5), ocean/ice (NOAAOI), land (ERA5) initialized using Betacast (<u>https://github.com/zarzycki/betacast</u>)
- Each unique CAM6 configuration run for four initialization dates (00Z 01 March/June/September/December 2020)

- 1º horizontal resolution, 58 vertical levels run over 72 hours
- PBL turbulence parameterized using CLUBBX
- Atmosphere (ERA5), ocean/ice (NOAAOI), land (ERA5) initialized using Betacast (<u>https://github.com/zarzycki/betacast</u>)
- Each unique CAM6 configuration run for four initialization dates (00Z 01 March/June/September/December 2020)
- Output from each config averaged over the four initialization dates

- 1º horizontal resolution, 58 vertical levels run over 72 hours
- PBL turbulence parameterized using CLUBBX
- Atmosphere (ERA5), ocean/ice (NOAAOI), land (ERA5) initialized using Betacast (<u>https://github.com/zarzycki/betacast</u>)
- Each unique CAM6 configuration run for four initialization dates (00Z 01 March/June/September/December 2020)
- Output from each config averaged over the four initialization dates
- Sensitivities calculated at t=72 hours (Qian et al. 2018, JGR-A)

MOAT identifies several input parameters in the momentum flux budget that influence surface stress

Kyle M. Nardi CESM Workshop-June 2023

PennState

MOAT identifies several input parameters in the momentum flux budget that influence surface stress

		μ Ranking mm3_mjsd_20													
	southern_ocean														
	C_invrs_tau_sfc	10	11	13	10	14	5	9	4	5	3	11	10		
Parameter	C_invrs_tau_shear	3	2	2	2	2	2	2	1	1	1	2	2		0
	C_invrs_tau_N2 -	8	12	7	7	13	9	13	2	11	9	14	14		Gre
	C_invrs_tau_N2_xp2 -	12	9	11	11	10	12	12	11	10	11	12	9		
	C_invrs_tau_N2_wp2 -	2	8	4	9	1	4	5	8	6	8	5	4		
	gamma_coef	6	5	12	5	4	7	3	7	2	4	3	5		
	gamma_coefb -	17	17	17	16	17	17	17	17	17	17	17	17		
	clubb_C11 -	9	6	3	8	6	11	6	5	4	5	4	7		
	clubb_C8 -	11	14	9	12	8	10	10	12	9	10	10	12		
put	clubb_beta -	16	16	16	14	16	15	14	16	14	14	15	<mark>16</mark>		
<u>_</u>	c_uu_shr	1	1	1	1	7	1	1	3	3	2	1	1		
	c_uu_buoy -	14	13	10	13	11	13	11	13	13	13	8	13		
	clubb_up2_sfc_coef	7	7	8	6	9	3	4	10	7	6	7	8		
	micro_mg_dcs -	15	15	15	17	15	16	16	14	16	16	16	15		
	micro_mg_vtrmi_factor	13	10	14	15	12	14	15	15	15	15	13	11		Lea
	micro_mg_autocon_lwp_exp -	4	4	5	4	3	6	7	6	8	7	6	3		
	micro_mg_accre_enhan_fact -	5	3	6	3	5	8	8	9	12	12	9	6		
		SHFLX -	- THFLX	n w	θ_{l}^{W}	r_tW^{-}	τ _{sfc} -	TKE	τ _{zm} -	K_{h}		W ^{'2}	- HJB		
						Οu	itput	Me	tric						
k	Kyle M. Nardi		С	ES	SN	1 V	Voi	rks	shc	p-qa	Ju	ne	20)23	3

eatest Response

ast Response

nput Parameter

MOAT identifies several input parameters in the momentum flux budget that influence surface stress

		μ Ranking mm3_mjsd_20 southern_ocean														
	C_invrs_tau_sfc -	10	11	13	10	14	5	9	4	5	3	11	10			
Input Parameter	C_invrs_tau_shear	3	2	2	2	2	2	2	1	1	1	2	2			_
	C_invrs_tau_N2	8	12	7	7	13	9	13	2	11	9	14	14		ſ	Grea
	C_invrs_tau_N2_xp2 -	12	9	11	11	10	12	12	11	10	11	12	9			
	C_invrs_tau_N2_wp2 -	2	8	4	9	1	4	5	8	6	8	5	4			
	gamma_coef	6	5	12	5	4	7	3	7	2	4	3	5			
	gamma_coefb -	17	17	17	16	17	17	17	17	17	17	17	17			
	clubb_C11 -	9	6	3	8	6	11	6	5	4	5	4	7			
	clubb_C8 -	11	14	9	12	8	10	10	12	9	10	10	12			
	clubb_beta -	16	16	16	14	16	15	14	16	14	14	15	16			
	c_uu_shr	1	1	1	1	7	1	1	3	3	2	1	1			
	c_uu_buoy -	14	13	10	13	11	13	11	13	13	13	8	13			
	clubb_up2_sfc_coef	7	7	8	6	9	3	4	10	7	6	7	8			
	micro_mg_dcs -	15	15	15	17	15	16	16	14	16	16	16	15			
	micro_mg_vtrmi_factor	13	10	14	15	12	14	15	15	15	15	13	11		_ ,	Leas
	micro_mg_autocon_lwp_exp -	4	4	5	4	3	6	7	6	8	7	6	3			
	micro_mg_accre_enhan_fact -	5	3	6	3	5	8	8	9	12	12	9	6			
		- SHFLX	- XJHHJ	u w	θ_{l}^{W}	$r_t W'$	τ _{sfc} -	- TKE	τ_{zm} -	K_{h}	_	W ⁷ -	- HJBA			
						Ou	tput	Me	tric							
k	Kyle M. Nardi		С	E	SN	I W	/oi	rks	shc	p-	Ju	ne	2	023	3	

atest Response

t Response

kmn182@psu.edu

MOAT identifies several input parameters in the momentum flux budget that influence surface stress

 $\frac{C_6}{u'w'}$

MOAT identifies several input parameters in the momentum flux budget that influence surface stress

Greatest Response

 $(1-C_{uu_shr})\overline{w'^2}\frac{\partial \overline{u}}{\partial z}$

PennState

Kyle M. Nardi CESM Workshop-June 2023

PennState

Kyle M. Nardi CESM Workshop-June 2023

3 🔼

Kyle M. Nardi CESM Works

CESM Workshop-June 2023

kmn182@psu.edu

PennState

Difference in UBOT Before and After Increasing C_invrs_tau_shear

After Avg. = 5.68563 Before Avg. = 5.99972 Diff = -0.31409

Difference in UBOT Before and After Increasing C_invrs_tau_shear

After Avg. = 5.68563 Before Avg. = 5.99972 Diff = -0.31409

80 70 60 50 40 30 20 10 Latitude -10 -20 -30 -40 -50 -60 -70 -80 -90 | -0.75 -0.375 0.375 0.75 0.0 Difference (UBOT) **PennState**

Difference in TAU Before and After Increasing C_invrs_tau_shear

Kyle M. Nardi CESM Workshop-June 2023

kmn182@psu.edu

Difference in TAU Before and After Increasing C_invrs_tau_shear

Kyle M. Nardi CESM Workshop-June 2023

kmn182@psu.edu

kmn182@psu.edu

PennState

Additional Questions? kmn182@psu.edu www.kylemnardiwx.com @kylemnardiwx

 We can use a sensitivity analysis to highlight input parameters in CLUBB that influence regional biases in fields like SWCF (Tropical Pacific) and surface wind stress (Southern Ocean)

- We can use a sensitivity analysis to highlight input parameters in CLUBB that influence regional biases in fields like SWCF (Tropical Pacific) and surface wind stress (Southern Ocean)
- The impacts of perturbing these input parameters are related changes in budgets of turbulent fluxes like heat/moisture flux and momentum flux

- We can use a sensitivity analysis to highlight input parameters in CLUBB that influence regional biases in fields like SWCF (Tropical Pacific) and surface wind stress (Southern Ocean)
- The impacts of perturbing these input parameters are related changes in budgets of turbulent fluxes like heat/moisture flux and momentum flux
- Future work: Apply the results of the sensitivity analysis for short-term hindcasts to longer-term simulations

Main Takeaways

- We can use a sensitivity analysis to highlight input parameters in CLUBB that influence regional biases in fields like SWCF (Tropical Pacific) and surface wind stress (Southern Ocean)
- The impacts of perturbing these input parameters are related changes in budgets of turbulent fluxes like heat/moisture flux and momentum flux
- Future work: Apply the results of the sensitivity analysis for short-term hindcasts to longer-term simulations
- Can we perturb a handful of input parameters in a 10-year, free-running simulation and reduce certain regional biases?

We thank our partners in this work

We thank our partners in this work

Nardi, K., C. Zarzycki, V. Larson, and G. Bryan, 2022: Assessing the sensitivity in depicting the tropical cyclone boundary layer to changes in the parameterization of momentum flux in the Community Earth System Model, *Mon. Wea. Rev.*, doi: 10.1175/MWR-D-21-0186.1.

We thank our partners in this work

Nardi, K., C. Zarzycki, V. Larson, and G. Bryan, 2022: Assessing the sensitivity in depicting the tropical cyclone boundary layer to changes in the parameterization of momentum flux in the Community Earth System Model, *Mon. Wea. Rev.*, doi: 10.1175/MWR-D-21-0186.1.

Main Takeaways

- We can use a sensitivity analysis to highlight input parameters in CLUBB that influence regional biases in fields like SWCF (Tropical Pacific) and surface wind stress (Southern Ocean)
- The impacts of perturbing these input parameters are related changes in budgets of turbulent fluxes like heat/moisture flux and momentum flux
- Future work: Apply the results of the sensitivity analysis for short-term hindcasts to longer-term simulations
- Can we perturb a handful of input parameters in a 10-year, free-running simulation and reduce certain regional biases?

Extra Slides

Kyle M. Nardi CESM Workshop-June 2023

PennState

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

 $L = \tau \overline{e^2}$

$$L = \tau \overline{e^{\frac{1}{2}}} \quad \longleftarrow \quad$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

Where the eddy time scale is the sum of dissipating processes...

$$L = \tau \overline{e}^{\frac{1}{2}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2 + C_{N2} \sqrt{N^2}}$$

$$L = \tau \overline{e^{\frac{1}{2}}} \quad \longleftarrow \quad$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

Where the eddy time scale is the sum of dissipating processes...

$$\frac{1}{\tau} = \boxed{C_{bkgnd} \frac{1}{\alpha}} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2} + C_{N2} \sqrt{N^2}$$
Background eddy dissipation at all levels

$$L = \tau \overline{e^{\frac{1}{2}}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + \underbrace{C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)}}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}_{\text{Eddy dissipation due to}} + C_{shear} \sqrt{\left(\frac{\partial \overline{v}}{\partial z}\right)^2 + C_{s$$

$$L = \tau \overline{e^{\frac{1}{2}}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + \frac{C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}}{\int_{\mathbf{C}_{N2} \sqrt{N^2}} C_{N2} \sqrt{N^2}}$$

$$L = \tau \overline{e}^{\frac{1}{2}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2} + C_{N2} \sqrt{N^2}$$
Eddy dissipation in stable environment

Kyle M. Nardi CESM Workshop-June 2023 Mm182@psu.edu MmPEnState

$$L = \tau \overline{e}^{\frac{1}{2}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

Where the eddy time scale is the sum of dissipating processes...

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2 + C_{N2} \sqrt{N^2}}$$

The coefficients attached to each term on the RHS are tunable within CLUBBX

$$L = \tau \overline{e}^{\frac{1}{2}} \quad \longleftarrow$$

Vertical turbulent length scale is the product of the eddy turnover time scale and the square root of TKE

$$\frac{1}{\tau} = C_{bkgnd} \frac{1}{\alpha} + C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)} + C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2} + C_{N2} \sqrt{N^2}$$

- The coefficients attached to each term on the RHS are tunable within CLUBBX
- This allows the dissipation of turbulent eddies to be tailored to a specific atmospheric regime (e.g., stable boundary layer)

Kyle M. Nardi CE

CESM Workshop-June 2023

kmn182@psu.edu

PennState

With an increase in cloud liquid water content in the PBL, there's an appreciable increase in low cloud fraction

Kyle M. Nardi CESM Workshop-June 2023

PennState

With an increase in cloud liquid water content in the PBL, there's an appreciable increase in low cloud fraction

Difference in CLDLOW Before and After Increasing C_invrs_tau_N2_wp2

With an increase in cloud liquid water content in the PBL, there's an appreciable increase in low cloud fraction

Difference in CLDLOW Before and After Increasing C_invrs_tau_N2_wp2

With an increase in cloud liquid water content in the PBL, there's an appreciable increase in low cloud Difference in CLDLOW Before and After Increasing C_invrs_tau_N2_wp2

Difference in CLDLOW Before and After Increasing C_invrs_tau_N2_wp2

Kyle M. Nardi CESM Workshop-June 2023

-0.331

After Avg. = 0.6922

kmn182@psu.edu

0.113 0.226

Difference (CLDLOW)

80

With an increase in cloud liquid water content in the PBL, there's an appreciable increase in low cloud Difference in CLDLOW Refore and After Increasing C invrs

With an increase in low cloud fraction, there's a considerable decrease in SWCF (increased magnitude)

Kyle M. Nardi CESM Workshop-June 2023

PennState

With an increase in low cloud fraction, there's a considerable decrease in SWCF (increased magnitude)

Difference in SWCF Before and After Increasing C_invrs_tau_N2_wp2

After Avg. = -71.81175 Before Avg. = -55.45565 Diff = -16.3561

Kyle M. Nardi CESM Workshop-June 2023

kmn182@psu.edu PennState

With an increase in low cloud fraction, there's a considerable decrease in SWCF (increased magnitude)

Difference in SWCF Before and After Increasing C_invrs_tau_N2_wp2

With an increase in low cloud fraction, there's a considerable decrease in SWCF (increased Difference in SWCF magnitude) Before and After Increasing C_invrs_tau_N2_wp2 Difference in SWCF 70 Before and After Increasing C_invrs_tau_N2_wp2 60 50 40 30 20 10 Latitude -10 -20 -30 -40 -50 -60 -42.75 42.75 0.00 -70 -80 After Avg. = -71.81175 Before Avg. = -55.45565 Diff = -16.3561 -90 -31.812-15.906 0.0 15.906 31.812 Difference (SWCF) kmn182@psu.edu **PennState** Kyle M. Nardi CESM Workshop-June 2023

With an increase in low cloud fraction, there's a considerable decrease in SWCF (increased Difference in SWCF magnitude) Before and After Increasing C_invrs_tau_N2_wp2 Difference in SWCF 70 Before and After Increasing C_invrs_tau_N2_wp2 60 50 40 30 20 Zonally averaged SWCF 10 Latitude decreases at all latitudes, especially in the tropics and subtropics -20 -30 -40 -50 -60 42.75 -42.750.00 -70 -80 After Avg. = -71.81175 Before Avg. = -55.45565 Diff = -16.3561 -90 -31.812-15.906 0.0 15.906 31.812 Difference (SWCF) kmn182@psu.edu **PennState** Kyle M. Nardi CESM Workshop-June 2023

Kyle M. Nardi CESM Workshop-June 2023

PennState

 C_{uu_shr} : term that offsets the turbulent production of $\overline{u'w'}$ by updrafts Increasing this term is expected to reduce the magnitude of $\overline{u'w'}$

$$(1-C_{uu_shr})\overline{w'^2}\frac{\partial u}{\partial z}$$

Kyle M. Nardi CESM Workshop-June 2023

 C_{uu_shr} : term that offsets the turbulent production of $\overline{u'w'}$ by updrafts Increasing this term is expected to reduce the magnitude of $\overline{u'w'}$

$$(1-C_{uu_shr})\overline{w'^2}\frac{\partial u}{\partial z}$$

 C_{sfc} : weighting term for turbulent eddy dissipation near surface Increasing this term reduces the vertical turbulent length scale L

$$C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z - z_{sfc} + d)}$$

Kyle M. Nardi CESM Workshop-June 2023

 C_{uu_shr} : term that offsets the turbulent production of $\overline{u'w'}$ by updrafts Increasing this term is expected to reduce the magnitude of $\overline{u'w'}$

$$(1-C_{uu_shr})\overline{w'^2}\frac{\partial u}{\partial z}$$

 C_{sfc} : weighting term for turbulent eddy dissipation near surface Increasing this term reduces the vertical turbulent length scale L $C_{sfc} \frac{u^*}{\kappa} \frac{1}{(z-z_{sfc}+d)}$

 $C_{shear} \sqrt{\left(\frac{\partial \overline{u}}{\partial z}\right)^2 + \left(\frac{\partial \overline{v}}{\partial z}\right)^2}$

Kyle M. Nardi CESM Workshop-June 2023

kmn182@psu.edu 💦

