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Overarching Questions

• Can Machine Learning (ML) methods reproduce 
physical parameterizations in CAM6?

• How does the ML performance depend on the 
complexity of the parameterization scheme?

• Can domain knowledge improve our use of ML?
• Complete discussion in recently published
manuscript 
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Bridging the Gap: 
Model Hierarchy with Increasing Complexity

2D (xz-slice)
and 3D Dry 
Dynamical 
Core Tests
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Bridging the Gap: 
Model Hierarchy with Increasing Complexity

2D (xz-slice)
and 3D Dry 
Dynamical 
Core Tests

• Moist version of the Held-Suarez test (Thatcher & Jablonowski, 2016)
• Coupled Moist Version with convection scheme (Betts & Miller, 1986)
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Moist Held-Suarez (TJ)
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L: Latent heat of vaporization
C: Condensation rate



Moist Held-Suarez (TJ)
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L: Latent heat of vaporization
C: Condensation rate

w/ Betts-Miller Convection (TJBM)

*Mathematical description of convective precipitation can be found in Frierson (2007)
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L: Latent heat of vaporization
C: Condensation rate

w/ Betts-Miller Convection (TJBM)

*Mathematical description of convective precipitation can be found in Frierson (2007)



Machine Learning

• Determines a functional relationship between data

• Our focus: Random Forests (RF)
• Include baseline Neural Network (NN) comparison

• Built using Scikit-Learn & Keras (TensorFlow)
• Tuned with SHERPA

• Uniquely trained and tuned RFs
• Can be considered our ‘best possible case’

7

Input Output



GCM Configuration

8

• NCAR’s Community Earth System Model (CESM) version 2.1
• Finite-Volume (FV) CAM6 run at 1.9 x 2.5 horizontal resolution with 30 
vertical levels

• 60-year model run with weekly output

• Data reshaped for preprocessing
• Ex: diagnostic vars(time, lev, lat, lon) -> features(time*lat*lon,lev*vars)
• NNs have normalization input layer

50 years for training and validation 4-year gap 6 years (test)



Zonal-Mean Time-Mean
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• ML reproduces dT/dt effectively
• Increase in regions of significant 
ML anomaly in dT/dt convection 
case for 

• Precipitation is almost 
indistinguishable



R2 Investigation
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• Correlation coefficient:
• Ratio of error to the variance
• Closer to 1.0: `learned’ better

• R2 decreases when complexity 
increases 

• More significantly for RFs



R2 Investigation
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• Correlation coefficient:
• Ratio of error to the variance
• Closer to 1.0: `learned’ better

• R2 decreases when complexity 
increases 

• More significantly for RFs
• Low skill region in (e) associated 
with peaks in convective precip

• Less apparent in NN



Domain Knowledge
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• Tendencies don’t utilize RH internally
• We are aware of connections between 
RH and the internal processes.



Domain Knowledge
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• Tendencies don’t utilize RH internally
• We are aware of connections between 
RH and the internal processes.

• ML improved significantly when 
included.

• Unexpected from data science 
perspective, but unsurprising from 
atmospheric science perspective



Application to 2-Hourly 
Data
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• Simple example of ‘transfer 
learning’

• Regions of minimal precipitation 
appear to be missing (1-4mm/day) 

• Unsure why (still preliminary)
• Bug? Not an issue in weekly-dataset 
• Prioritizing large-scale features?

(Chattopadhyay, 2023 arXiv:2304.07029)
• Could impact online performance

https://arxiv.org/abs/2304.07029


Ongoing & Future Work
• Coupling these to CAM

• We are close – hit a few ”known unknowns” in recent weeks
• RF size/feasibility for online runs
• ‘MaxDepth’ parameter significantly impacts both skill and size 

• Offline transfer learning

• Adding steps to the hierarchy
• Repeatable ‘Simple Physics’ CAM-ML workflow?

• Moving on from RFs?
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Thank You!

Contact
glimon@umich.edu 

Paper

mailto:glimon@umich.edu


On Original data
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• Weekly output, 20 weeks (very 
choppy)

• Captures the 1-4mm/day



Snapshots
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Mean Fields
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R2 Investigation
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Skill Variation
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