Marine Cloud Brightening Forcing and Response in CESM2 and E3SMv1

Haruki Hirasawa¹, Mingxuan Wu², Kyoungock Choi³, Dipti Hingmire¹, Phil Rasch³, Hailong Wang², Hansi Singh¹, Rob Wood³, Sarah Doherty³

Marine Cloud Brightening (MCB)

MCB is a proposed solar radiation management technique where:

- 1. Sea salt aerosol injected into low clouds
- 2. Cloud droplet number concentration increase
- 3. Cloud albedo increase
- 4. Local surface cooling

What can we learn about MCB from GCMs?

GCMs can be used to assess:

- Large scale cloud response to aerosol injection
- Radiative and carbon cycle feedbacks
- Local and remote climate impacts due to brightening

Physical Science Checkpoints in Marine Cloud Brightening Research

Diamond et al., 2022

Testing MCB in GCMs

Prescribed Cloud Droplet Number Concentration (<u>CDNC</u>)

Set in-cloud liquid CDNC to prescribed values in selected regions

Sea salt emissions (SSE)

 Add accumulation mode (~0.1micron) aerosols to surface sea salt flux in selected regions

MCB Forcing Experiments

- We conduct CESM2 and E3SMv1 simulations
- Apply MCB perturbations three tropical regions with extensive low cloud (NEP, SEP, SEA)
- Vary MCB magnitude in Fixed SST simulations (targeting ERF = -1.8Wm⁻²)

		CESM2	E3SMv1
CDNC	Tested range	375 to 675cm ⁻³	375 to 2000cm ⁻³
	-1.8Wm ⁻² value	600cm ⁻³	2000cm ⁻³
SSE	Tested range	4.3 to 250Tg/yr	14 to 150Tg/yr
	-1.8Wm ⁻² value	7Tg/yr	42.5Tg/yr

Coupled Experiments

- CDNC and SSE perturbations are applied to coupled SSP2-4.5 simulations ("G4-like")
- -1.8Wm-2 forcing applied for 2015-2065 for NEP + SEP + SEA
- Three regions also tested separately

How do these simulations differ from past work?

- 1. Perform a multi-model comparison of climate impact of MCB in regions with high cloud sensitivity
- 2. Specify based on **forcing** strength rather than CDNC/SSE increase
 - Separate forcing uncertainty from teleconnection uncertainty
- 3. Updated assessment in CMIP6 models

• Aerosol-cloud interaction more sensitive in CESM2

• Aerosol-cloud interaction more sensitive in CESM2

- Aerosol-cloud interaction more sensitive in CESM2
- At very high emission rates, additional SSE reduces ACI (>100Tg/yr globally)

- Aerosol-cloud interaction more sensitive in CESM2
- At very high emission rates, additional SSE reduces ACI (>100Tg/yr globally)
- Globally, SSE forcing continues to increase due to direct aerosol forcing

MCB temperature impact comparison (CDNC -> -1.8Wm⁻²)

- La Niña cooling pattern in both models
- <u>CESM2</u>:
 - Stronger tropical cooling
 - Offset by midlatitude warming
- <u>E3SM</u>:
 - Weaker Pacific cooling
 - Few regions of warming

E3SMv1 (GMST = -0.91)

- 3.5 - 2.5 - 1.5 - 1.5 - 0.5 - - 0.5 - - 0.5 - - 0.5 - - 0.5 - - - 0.5

emperature (K

urface

3.5 2.5

1.5 0.5

Large scale response uncertainty for SEA MCB

- We test the response to each of the three regions individually
- For example, SEA MCB induces a "Atlantic Nina" response
- CESM2 and E3SMv1 see opposite signed high NH latitude response

Conclusions

- CESM2 is substantially more sensitive to SSE and CDNC perturbations than E3SMv1
- Excessive SSE emissions reduces aerosol-cloud interaction efficacy
- Substantial role for direct aerosol forcing at high emission rates
- Difference in large-scale response, such as opposite signed effects between CESM2/E3SM in some regions

Experiments

We conduct CESM2 and E3SMv1 simulations :

- 1. Fixed SST simulations at a range of CDNC and SSE perturbations to find target forcing (-1.8Wm-2)
- 2. Apply chosen CDNC to NEP, SEP, and SEA in coupled SSP2-4.5 simulations (G4-like)
- 3. Apply chosen CDNC to each region individually in coupled SSP2-4.5 simulations

GCM uncertainty in MCB impacts

• MCB depends on aerosol-cloud interactions, which have large uncertainties across GCMs

	Gregory regression ERF	MCB sensitivity
Units	${ m W}{ m m}^{-2}$	${ m K}{ m W}{ m m}^{-2}$
BNU-ESM	-1.91	0.61
CanESM2	-2.00	0.48
CSIRO-Mk3L-1-2	-2.48	0.43
GISS-E2-R	-0.58	0.29
HadGEM2-ES	-1.93	0.49
IPSL-CM5A-LR	-1.05	0.42
MIROC-ESM	-2.10	0.50
MPI-ESM-LR	-2.32	0.52
NorESM1-M	-0.89	0.35
Ensemble median	$-1.91 (\pm 0.63)$	0.47 (±0.09)

G4cdnc forcing (50% cdnc increase) Stjern et al., 2018

GFDL G4seasalt forcing Mahfouz et al., 2023

What can we learn about MCB from ESMs?

- •How sensitive are clouds to MCB on large scales?
- •What are the climate impacts of MCB?
- •How do climate impacts change, based on where MCB occurs?

Cloud, forcing impacts

Cloud, forcing impacts

CDNC vs. SSE – does it change the response?

- The climate response to CDNC vs. SSE are very similar when ERFs are similar
- Modest, but statistically significant differences:
 - CDNC causes more cooling

 drying within forcing
 regions and less outside of
 them

CDNC – SSE

CESM2 Annual mean Temperature and Precipitation response

2m Temperature

Precipitation

