Wind shear impacts on convection — Implication for convective organization parameterization in climate models

NCAR is sponsored by National Science Foundation

Yang Tian (NCAR) Rich Neale (NCAR) 06/13/2023

Past studies of mesoscale parameterization

Multiscale Coherent Structure Parameterization (MCSP)

Donner 1993;

Donner et al. 2001

Mapes and Neale 2011 (*org*)

Moncrieff et al. 2017 (MCSP)

$$Q = Q_c + Q_m \qquad Q_m(p,$$

NCAR is sponsored by National Science Foundation

Slantwise layer overturning structure

 $(t) = -\alpha_1 Q_c(t) \sin 2\pi$

Q: Convective heating Qc: Heating from ZM deep convection scheme Qm: Added mesoscale heating, depend on wind shear trigger

- wind shear
- Existing literatures are mostly focused on a single squall-line case or idealized warm bubble experiments
- organization-wind shear relationship to be used in climate models

NCAR is sponsored by National Science Foundation

Motivations: LES study of vertical wind shear on cumulus ensembles

Include a more robust convective organization trigger/response related to

• We propose to get an ensemble convective response in a less storm-like and more realistic environment, and inform a physically-based convective

Model setup

- Cloud-resolving model: SAM 6.11.6
- except for the added zonal winds
- Model setup: 64 stretching vertical levels; 500m horizontal; 256 x 256 grid boxes; 10s temporal resolution
- for 3 hours

NCAR is sponsored by National Science Foundation

Radiative Convective Equilibrium (RCE) configurations, no large-scale forcing,

• After reaching RCE status on day 25, 20 ensemble members with each being run

NCAR is s National Scienc

्यम्

Press and

For control scenario, 10 out of 20 ensemble members display organization (more circular)

ctl simulation 0.08 hr

NCAR is spo National Science Fo

linear simulation 0.08 hr

For linear shear scenario, 15 out of 20 ensemble members display convective organization

Precipitation responses to various magnitudes of shear

Other convective responses to various magnitudes of shear

Precipitation response to wind shear

Scientific questions

simulation?

• What determines the critical wind shear value?

NCAR is sponsored by National Science Foundation

• Why is there surface precipitation suppression in the first hour of

• Why is the convective response to wind shear non-monotonic?

Vertical momentum budget analysis Cloudy updrafts buoyancy, PP, acceleration

NCAR is sponsored by National Science Foundation

pp pb pm buoy acce

×10⁻⁴

$$\frac{1}{2}\frac{\partial \bar{w}^2}{\partial z} = \bar{B} - \frac{1}{\rho}\frac{d\bar{p}'_B}{dz} - \frac{1}{\rho}\frac{d\bar{p}'_M}{dz} - \epsilon \bar{w}$$

$$\nabla^2 p'_B = \partial_z(\rho_0 B),$$

$$\nabla^2 p'_M = -\nabla \cdot (\rho_0 \vec{v} \cdot \nabla \vec{v}).$$

Momentum budget temporal evolution of cloudy updrafts

Ctl5

Linear6

Take-home messages

A physically- and process- based convective trigger could be implemented to better characterize MCSs in coarse-resolution climate models.

A competing mechanism between pressure drag and surface fluxes. The immediate reduction can be related to pressure drag, then it takes about an hour for a convective cell to reach to the upper troposphere, that's where the surface fluxes kick in.

NCAR is sponsored by National Science Foundation

Cumulus ensembles response to imposed wind shear in a non-monotonic behavior

