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Past studies of mesoscale parameterization

Multiscale Coherent Structure Parameterization (MCSP)
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Motivations: LES study of vertical wind shear on cumulus
N IES

* Include a more robust convective organization trigger/response related to
wind shear

 Existing literatures are mostly focused on a single squall-line case or
idealized warm bubble experiments

* We propose to get an ensemble convective response in a less storm-like
and more realistic environment, and inform a physically-based convective
organization-wind shear relationship to be used in climate models
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Model setup

* Cloud-resolving model: SAM 6.11.6

« Radiative Convective Equilibrium (RCE) configurations, no large-scale forcing,
except For the added zonal winds

« Model setup: 64 stretching vertical levels; 500m horizontal; 256 x 256 grid
boxes; 10s temporal resolution

« After reaching RCE status on day 25, 20 ensemble members with each being run
for 3 hours
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ctl simulation 0.08 hr

20 | 40
X (km)

For control scenario, 10 out of 20 ensemble members display organization (more circular)
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linear simulation 0.08 hr
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® For linear shear scenario, 15 out of 20 ensemble members display convective organization




Precipitation responses to various magnitudes of shear

104 Horizontal wind profiles urface precipitation
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Other responses to various magnitudes of shear

Latent heat flux
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Other convective responses to various magnitudes of shear

umulus heating

Apparent moisture sink

Heating rate (K/day) Eddy moist static energy flux
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Precipitation response to wind shear

Mean prec to wind shear

Min prec to wind shear

Max prec to wind shear

NCAR IS sponsored by NQT E S S TR shear (/s)
Natlonal Sctence Foundatlon I o PR N RN i RGA )

I )

g
)



Scientific questions

* Why is there surface precipitation suppression in the first hour of
simulation?

* Why is the convective response to wind shear non-monotonic?

 What determines the critical wind shear value?
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Vertical momentum budget analysis

Cloudy updrafts buoyancy, PP, acceleration

Vertical momentum budget
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Momentum budget temporal evolution of cloudy updrafts

Momentum budget at 90 min

Momentum budget at 90 min




Take-home messages

Cumulus ensembles response to imposed wind shear in a non-monotonic behavior

A physically- and process- based convective trigger could be implemented to better
characterize MCSs in coarse-resolution climate models.

A competing mechanism between pressure drag and surface fluxes. The immediate reduction
can be related to pressure drag, then it takes about an hour for a convective cell to reach to the
upper troposphere, that’s where the surface fluxes kick in.
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Ctl run QN evolution Ctl5 run QN evolution
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