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Using a model to represent real-world hydrology

Song et al, 2015

• Model representations require choices of model structure and physics (parameterizations) and depend 
on specification of inputs:  forcings and parameter values. 

• These modeling choices and input specifications are inherently uncertain … a long-standing challenge
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Different communities approach this challenge differently

The earth system modeling community 
advances model fidelity through:
• improving observational analyses to better 

estimate inputs (forcings, parameters, structure)
• using observational studies to refine 

parameterizations (physics)
• increasing complexity of process representation
• philosophy:  we can eventually represent 

everything through better observations and physics 
improvement 

 

The applied hydrological modeling community 
advances model performance through:
• improving observational analyses to better estimate 

inputs (forcings, parameters)
• optimization of model parameters and structure 

given the existing parameterizations
• some improvement of physics -- but only as needed
• philosophy:  we will never represent everything but 

can at least optimize what we don’t know

https://www.nsf.gov/news/newsmedia/ENV-discoveries/CZO-disc
overy-series.jsp

NSF Critical Zone Observatory

This project brings an 
applied hydrology mindset 
to the ESM development 

context
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Applied ESM-based modeling seeks both realism and hydrologic performance

A number of new water security related projects are exploring the use of CTSM as a process/physics 
advance over more common or traditional ‘applied hydrology’ models 
• climate change studies – land modeling uncertainty is a key component (Lehner et al., 2019)
• flood, drought, and hydrologic prediction applications – supporting water management agency missions

This presentation describes initial work supporting a climate change project sponsored by USACE* 

Overarching goal
• develop land models that can represent current hydrology (performance) as well as climate change 

impacts on hydrology (fidelity) in both coupled and offline context

Immediate goal 
• develop CTSM configurations and parameter sets that perform well for hydrology – and with robust 

climate-hydrology sensitivities

First steps
• use common parameter estimation approaches from applied hydrological modeling for CTSM
• develop a large-sample small-watershed CTSM implementation testbed for investigating parameter 

estimation and configuration strategies (US-focused, for now)

SPONSOR:   US Army Corps of Engineers (USACE) – Climate Preparedness and Resilience Program 4



Hydrologic model parameter estimation

• A decades-old practice in applied hydrology with many algorithms and much theory (geo-informatics)
• Multiple available multi-method packages for parameter sensitivity assessment and optimization exist

https://dakota.sandia.gov/

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2015WR018230

http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html

https://spotpy.readthedocs.io/en/latest/

https://pesthomepage.org/

Duan et al, WRR, 1992

e.g., MCMC

MO-ASMO
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An example of large-sample watershed hydrological modeling 
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EM-Earth ensemble 
meteorological dataset

Three types of datasets

A. deterministic_raw_daily

B. deterministic_hourly 

C. probabilistic_daily (25 members) 

Tang et al., 2022, BAMS
Dataset: 
https://doi.org/10.20383/102.0547

SUMMA hydrological model

mizuRoute routing model

Mizukami et al., 2016

289 representative cryosphere basins

Basins are selected from a global database 
of ~19,000 basins:
• Basin clustering 

✔ k-means clustering
• Define basic basin requirements

✔ Area
✔ Period
✔ Human impact
✔ Snow

• Basin selection:
✔ Space window-based selection

Tang et al., 2023



An example of large-sample watershed hydrological modeling 
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(1) Data preparation
o Streamflow data, geospatial 

parameter data, forcing data, 
MODIS/AVRHRR snow cover data.

(2) Spin up

o SUMMA is recursively run 20 times 
using forcing in the year before the 
calibration period.

(3) Calibration
o SUMMA/mizuRoute is calibrated 

using streamflow and 
MODIS/AVHRR snow cover data. 

(4) Ensemble simulation
o EM-Earth probabilistic estimates 

from 25 members are used to drive 
SUMMA/mizuRoute during the 
validation period. 

Tang et al., 2023



An example of large-sample watershed hydrological modeling 
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Ostrich calibration tool

https://usbr.github.io/ostrich

The calibration design is to preliminarily constrain the a-priori 
parameters and approach the behavioral parameter space rather 
than achieve optimal parameter estimation. But we still obtain 
substantial performance improvement after the limited calibration. 
The median objective KGE' values are 0.66 and 0.60 in the 
calibration and validation periods, respectively. 

Remote sensing snow coverStreamflow measurement

Tang et al., 2023



A CTSM Parameter Optimization Workflow

0. Data preparation

Parameter list Basin files Reference datasets

1. Build model

Create case

Modify 
settings

Model build 

parallel or clone

2. Calib. setting

Folder 
structure

Check params

Calculate
param factors

Calibration 
configurations

3. Forcing subset

Get raw 
forcing file list

Subset using 
mesh domain

Time merge

Update datm 
stream file

4. Spin up

Decide period

Run model

Archive restart 
files

Change model 
setting

5. Calibration

Parallel/serial run Archive outputsRestart (optional)

• Dataset dependent

• Python
• Configuration file
• Automatic workflow

All data and settings 
can be generated by 
submitting one job.
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Tools:  
* Ostrich
* MO-ASMO (new) 
* ML/DL (next)



A CTSM Parameter Optimization Workflow

0. Data preparation

Parameter list Basin files Reference datasets

▪ Parameters in parameter 
netcdf, surface data netcdf, 
and namelist text files are 
supported

▪ Multiplicative and additive 
factors are supported

▪ Binding parameters will use 
the same factors.

▪ Default and Type are optional.

The parameters are selected based on expert identification of key hydrological 
processes/controls, with added perspective/confirmation from the PPE results.  
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A CTSM Parameter Optimization Workflow

2. Calib. setting

Folder 
structure

Check params

Calculate
param factors

Calibration 
configurations

https://usbr.github.io/ostrich             Matott et al., 2011, 2012

The Optimization Software Toolkit for Research Involving Computational Heuristics 
(OSTRICH) is a model-independent program that automates the processes of model 
calibration and design optimization without requiring the user to write any additional 
software. 

Global search algorithms implemented within OSTRICH
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A CTSM Parameter Optimization Workflow

3. Forcing subset

Get raw 
forcing file list

Subset using 
mesh domain

Time merge

Update datm 
stream file

ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc
ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc
ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc
…
ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

Raw forcing

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-01.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-02.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-03.nc
…
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2018-12.nc

Subsetting
- Effectively reduce time cost 

for regional studies

subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1980-1984.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1985-1989.nc
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.1990-1994.nc
…
subset_ctsmforc.NLDAS2.0.125d.v1.Prec.2015-2018.nc

Time merging (month to X-years)
- Easier file management
- Avoid excess file numbers in 

some systems 
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Using large-sample watershed modeling to support learning and development

Benefits of large-sample watershed modeling

Gupta et al., Large-sample hydrology: a need to 
balance depth with breadth. HESS. 2014

• Improved accuracy: Broad understanding of the model’s 
performance, limitations and variability

• Statistical robustness: Increase the statistical robustness 
of the simulation and calibration results

• Regional variations: To identify and account for regional 
variations in model parameters and to test the 
generalizability of the model across different basins.

• Improved understanding: Reveal important relationships 
and dependencies between the model parameters, leading 
to a deeper understanding of the underlying hydrological 
processes.

• Better representation: A better representation of the 
diversity and variability of natural systems, enabling the 
assessment of the impacts of changes in a more 
comprehensive manner.
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Large-sample watershed modeling using CTSM and CAMELS

CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)

• A comprehensive set of catchment 
attributes, meteorological variables, 
streamflow observations, and model 
results for 671 US catchments 

• Widely used in hydrology research to 
develop and evaluate hydrological 
models, variability and predictability

• Has been a central dataset in the global 
rise of machine learning in hydrology 

• Has been extended in many countries by 
independent efforts

• Was originally developed in NCAR RAL 
to study streamflow predictability and 
model complexity

Addor et al., 2017

Newman et al., 2015
Daily flow Monthly flow
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Large-sample watershed modeling using CTSM and CAMELS

Blue: 671 CAMELS basins

Red: 10% randomly 
selected basins for this 
presentation.

• Each basin is simplified as a mesh grid to facilitate large-sample modeling. 
• For nested basins (i.e., upstream VS downstream), the split strategy is adopted to subtract upstream 

basins from downstream basins because mesh grids cannot overlap.
• All the 671 basins of CAMELS will be used in the subsequent experiments. 15



Large-sample watershed modeling using CTSM and CAMELS

 
Correlation 
coefficient

Bias ratio Variability 
ratioFor the calibration period:

Computation
- 1 CPU and12 hours are 

allocated to each basin
- ~40 trials per basin, while 

normally hundreds of trials are 
needed to achieve ideal 
calibration

Results
- KGE’ increases in 66 out of 67 

basins after calibration.
- The median KGE‘ increases 

from -0.01 to 0.17 after 
calibration.

- The median/mean of ”Best - 
Original” KGE’ is 0.15/0.53.

16Prelim. testing on 10% of CAMELS basins



Large-sample watershed modeling using CTSM and CAMELS

Example-1: 02465493     KGE’: 0.43 -> 0.64

Example-2: 02427250 KGE’: 0.48 -> 0.76

17

KGE’ PDF shift after calibration



Moving toward multi-objective emulation-based optimization of CTSM

• Calibration of the CTSM model 
in Alaska and the Yukon River 
Basins

• Used MO-ASMO algorithm 
(surrogate modeling)

• The mean Kling-Gupta 
Efficiency (KGE) score of daily 
streamflow increased from 0.43 
to 0.63 

Cheng et al., 2023
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Moving toward multi-objective emulation-based optimization of CTSM
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We are extending the 
CTSM parameter 
optimization workflow to 
include the MO-ASMO 
algorithm because of its 
multi-objective and 
parallelization functionality.

0. Data preparation

Parameter list Basin files Reference datasets

1. Build model

Create case

Modify settings

Model build 

parallel or clone

2. Calib. setting

Folder structure

Check params

Calculate
param factors

Calibration 
configurations

3. Forcing subset

Get raw 
forcing file list

Subset using 
mesh domain

Time merge

Update datm 
stream file

4. Spin up

Decide period

Run model

Archive restart 
files

Change model 
setting

5. Calibration

Parallel/serial run Archive outputsRestart (optional)

Ostrich

MO-ASMO



Moving toward multi-objective emulation-based optimization of CTSM
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Optimization tools:
● Ostrich (initial)

○ Mattott et al (2017)
● MO-ASMO (new)

○ surrogate modeling
○ Gong et al (2016)
○ Cheng et al (2021)

● ‘differentiable learning’ 
(next)

○ ie, ML/DL emulators
○ Feng et al, WRR, 2022

0. Data preparation

Parameter list Basin files Reference datasets

1. Build model

Create case

Modify settings

Model build 

parallel or clone

2. Calib. setting

Folder structure

Check params

Calculate
param factors

Calibration 
configurations

3. Forcing subset

Get raw 
forcing file list

Subset using 
mesh domain

Time merge

Update datm 
stream file

4. Spin up

Decide period

Run model

Archive restart 
files

Change model 
setting

5. Calibration / Parameter Optimization

Parallel/serial run Archive outputsRestart (optional)



Moving toward multi-objective optimization of CTSM
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A test example of the workflow output using 
random forest as the surrogate model

MO-ASMO workflow for large-sample watersheds
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We aim to streamline hands-on model setup and calibration effort 



Summary and Next Steps

We developed a streamlined CTSM calibration workflow and hydrology ‘testbed’:

• This new CTSM calibration capability development supports a larger project to assess the robustness of 
different hydrological model configurations for projecting forced responses to climate change.

• The CAMELS-CTSM implementation offers a useful and efficient testbed for evaluating alternative CTSM 
model configurations and development choices.  

• The parameter estimation workflow will enhance the local performance of the CTSM hydrology component 
and yield insights into regional to continental parameter estimation strategies.

Next steps:

• Future calibration development efforts include: 
• improving parallel computation
• further parameter refinement
• incorporating full ML/DL emulation approaches for ‘differentiable learning’ (Feng et al, WRR, 2022)
• assessing alternative CTSM configuration choices (including the hillslope parameterization)
• distributed domains
• the use of river routing
• regionalization to uncalibrated basins, and eventually to the global domain 
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Thank you!
guoqiang@ucar.edu
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