2023 CESM Land Model Working Group Meeting June 13, 2023

Impacts of Stratospheric Aerosol Intervention on Surface Air Pollutants

Lili Xia¹, Alan Robock¹, Jadwiga Richter², and Matthew Henry³

¹Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, US ²Climate and Global Dynamics laboratory, NCAR, Boulder, CO, US

³Mathematics and Statistics, University of Exeter, Exeter, UK

Surface air pollution is influenced by a combination of factors, including emissions (anthropogenic and natural), climate, atmospheric composition, atmospheric dynamics, and atmospheric chemistry and physics.

Previous studies on Stratospheric Aerosol Intervention impacts on surface aerosols and ozone

Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols **Kravitz B.** et al., *Journal of Geophysical Research*, 2009

"For annual injection of 5 Tg of SO₂ into the tropical stratosphere or 3 Tg of SO₂ into the Arctic stratosphere, **neither** the maximum point value of sulfate deposition... **nor** the largest additional deposition... **is enough to negatively impact most ecosystems**."

Impacts of Stratospheric sulfate geoengineering on tropospheric ozone **Xia L.** et al., *Atmos. Chem. Phys.*, 2017

"In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly **dependent on the SRM scheme**."

Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure **Eastham S. D.** et al., *Atmospheric Environment*, 2018

"As such we estimate that sulfate geoengineering in 2040 would cause **26,000 early deaths annually** relative to the same year without geoengineering. "

What goes up must come down: impacts of deposition in a sulfate geoengineering scenario **Visioni D.** et al., *Environmental Research Letter*, 2020

Under RCP8.5, with SO₂ injection to keep the temperature at 2020 level, "we show that the amount of stratospheric sulfate needed could be globally balanced by the predicted decrease in tropospheric anthropogenic SO₂ emissions, but the special distribution would move from industrialized regions to pristine areas."

Assessing Responses and Impacts of Solar climate intervention on Earth System with stratospheric aerosol injection (**ARISE-SAI**)

PM2.5 in CESM2(WACCM6) and UKESM1-0-LL

PM2.5 = Black Carbon + Primary Organic Matter + Secondary Organic Matter + SO4 + (0.25 x Sea Salt) + (0.1 x Dust)

(Turnock et al., 2022)

(Red and gray lines on the plot are from Shim et al., 2021)

vention (RISCI)

Dust Optical Depth (2005-2014) (Zhao et al., 2022)

RUTGERS | Rutgers Impact Studies of Climate Intervention (RISCI)

UNIVERSITY | NEW BRUNSWICK

PM2.5 in CESM2(WACCM6) and UKESM1-0-LL

UNIVERSITY | NEW BRUNSWICK

PM2.5 concentration difference (μg/m³) (ARISE-SAI-1.5 minus SSP2-4.5) (2060-2069)

PM2.5 concentration difference (μg/m³) (without dust and sea salt) (ARISE-SAI-1.5 minus SSP2-4.5) (2060-2069)

CESM2 (average of 10 ensembles)

UKESM1 (average of 5 ensembles)

Surface ozone concentration (ppb)

Surface ozone concentration difference (ppb)

(ARISE-SAI-1.5 minus SSP2-4.5) (2060-2069)

- In both CESM2 and UKESM1, anthropogenic emissions and O₃ precursors primarily drive the reduction of surface PM2.5 (excluding dust and sea salt) and surface O3 under the SSP2-4.5 and ARISE-SAI-1.5 scenarios;
- The concentration of dust in CESM2 is double that in UKESM1, which contributes the higher concentration of PM2.5 in CESM2;
- Although land averaged PM2.5 and O₃ show small differences between SSP2-4.5 and ARISE-SAI-1.5, there are large regional differences over urban areas.
- Analyze ozone budget;
- Use high frequency output to calculate the number of days where PM2.5 and surface
 O₃ exceed the EPA and WHO guidelines in various regions under SSP2-4.5 and
 ARISE-SAI;
- Explore the mechanisms driving changes in PM2.5 and surface O₃ change under the ARISE-SAI scenario in comparison to the SSP2-4.5.