A machine learning approach targeting parameter estimation for PFT coexistence modeling using ELM-FATES

Lingcheng Li¹ (Lingcheng.li@pnnl.gov)

Yilin Fang², Zhonghua Zheng³, Mingjie Shi¹, Marcos Longo⁴, Charles D. Koven⁴, Jennifer A. Holm⁴, Rosie A. Fisher⁵, Nate G. McDowell^{1,6}, Jeffrey Chambers⁴, L. Ruby Leung¹

CESM Workshop 2023

Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA Earth System and Science Division, Pacific Northwest National Laboratory, Richland, WA, USA Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA CICERO Center for International Climate and Environmental Research, Oslo, Norway School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, USA

Science

Li, L., Fang, Y., Zheng, Z., Shi, M., Longo, M., Koven, C., Holm, J., Fisher, R., McDowell, N., Chambers, J., and Leung, R.: A machine learning approach targeting parameter Office of estimation for plant functional type coexistence modeling using ELM-FATES (v2.0), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1286, 2023. (accepted)

Challenge in modeling PFTs coexistence in FATES

• FATES is a "cohort-based" VDM model

represent competition/coexistence between different plant functional types (PFTs)

• The challenge is to reasonably simulate the coexistence of PFTs

Coexistence theory and modeling

Niche-based coexistence theory

Filtering

Environmental convergence in strategy to adapt to the surrounding environment

Niche partitioning divergence in strategy to ensure differentiation in resource requirements

Research goal and testbed

Research goal

Utilize machine learning (ML) to

- alleviate the challenge of modeling PFTs coexistence
- reduce model errors against observations

XGBoost

SHAP

5

Testbed

• a tropical forest site: Manaus

Model configuration

6

Two PFTs represented in FATES

Low

- Early vs. late successional broadleaf evergreen tropical tree
- 11 parameters, trait ranges based on tropical tree measurements

High

Parameter name	Early PFT Late PFT	Г Range
Maximum carboxylation rate of Rub. at 25 °C, canopy top	$V_{cmax,early} > V_{cmax,late}$	40–105
Specific leaf area, canopy top	$SLA_{early} > SLA_{late}$	0.005–0.04
Background mortality rate	$M_{bk,early} > M_{bk,late}$	0.005-0.05
Wood density	$WD_{early} < WD_{late}$	0.2–1.0
Leaf longevity	$L_{leaf,early} < L_{leaf,late}$	0.2–3.0
Maximum size of storage C pool, relative to the maximum size of leaf C pool	same	0.8–1.5

Overall flowchart and research questions

P1. Parameter sampling

Latin hypercube sampling, and tradeoffs $V_{cmax,early} > V_{cmax,late}$, $SLA_{early} > SLA_{late}$ $M_{bk,early} > M_{bk,late}$, $WD_{early} < WD_{late}$ $L_{leaf,early} < L_{leaf,late}$

P2. Initial FATES experiments

Exp-OBS, consideration of observed trait _ relationships

Exp-CTR

P3. Build ML models and sensitivity analysis

ML models train and test SHAP importance analysis

P4. Parameter selection and validation

Exp-ML, ELM-FATES simulation using ML selected parameters

Specific research questions

- Q1: Whether observed trait relationships can improve PFTs coexistence?
- Q2: Can simple parameter correlations be constructed to improve PFTs coexistence?
- Q3: Can ML selected parameter values improve PFTs coexistence?

Q1 \rightarrow Observed trait relationships cannot improve PFTs coexistence modeling

Two experiment ensembles

- Exp-CTR, traits tradeoffs
- Exp-OBS, traits tradeoffs + observed trait relationships

\rightarrow degraded the PFT coexistence simulations

Koven et al. (2020) and Longo et al. (2020)							
$M_{bk} = 0.0082 \times e^{(0.0153 \times V_{cmax})}$	(1)						
$L_{leaf} = 0.0001 \times SLA^{(-2.32)}$	(2)						
$WD = -0.583 \times \ln(SLA) - 1.675$	4 (3)						

PFT coexistence : Biomass ratio between early PFT and total biomass

 $\begin{array}{l} BR_{e2t} \in (0.9, 1.0], \, \text{``early''} \\ BR_{e2t} \in [0.1, 0.9], \, \text{``coexistence''} \\ BR_{e2t} \in [0.0, 0.1), \, \text{``late''} \end{array}$

Q2 \rightarrow Simple constructed correlations are also insufficient

Based on Exp-CTR, build empirical simple parameter correlations

- $SLA_{late} > 0.35 \times SLA_{early} + 0.003$
- $V_{cmax,diff} < -4800 \times SLA_{diff} + 100$
- $WD_{diff} > 55 \times SLA_{diff} 1.3$

Within these constrained parameter spaces,

- Coexisting cases increases from 20.6% to 32.6%
- 67.4% is still either early or late
- Optical cases account only about 2.3%

Northwest

Build ML surrogate models

In Exp-CTR, 1500 samples of

- Xn, parameters and their difference e.g., V_{cmax,early}, SLA_{diff},
- Yi, ELM-FATES outputs e.g., ET, SH, GPP, AGB, BW

Build emulators $Y_i = \mathbf{f}_i (X_1, X_2, X_3, ...)$

> Machine learning algorithm e.g., XGBoost (Chen et al., 2016)

> > SHAP (SHapley Additive exPlanations, Lundberg et al., 2017)

Parameters selection

ML surrogate models have good performance

- 6 XGBoost surrogate models: ET, SH, BW, GPP, AGB, and BR_{e2t}
- Overall good performance in training and testing samples
 - AGB and BR_{e2t} are relatively difficult to emulate

Which parameters are important

• Only 3 features dominate the prediction of ET, SH, BW, and GPP

12

Which parameters are important

- More than 6 features are most important for predicting AGB and BR_{e2t}
- Trait parameter differences between early and late PFT are very important
 - e.g, *SLA_{diff}*, *Vcmax_{diff}*

13

Parameter selection using ML surrogate models

ML selected parameter values largely improve FATES simulation

- ML selected parameters \rightarrow better capture observations
- ML selected parameters \rightarrow more well-coexistent runs

16

Compared with **Exp-CTR** and **Exp-ML** have

- 3.6 times more coexistence cases, $20\% \rightarrow 73\%$
- 23.6 times more optimal cases, $1.4\% \rightarrow 33\%$, with higher model accuracy

Category	$BR_{e2t} AGB_b \in [0.1, 0.9] < 15\%$	AGB_bias	s GPP_bias < 15%	ET_bias <15%	SH_bias < 15%	BW_bias < 15%	Exp-CTR		Exp-ML		Patio
		<15%					count	percent	count	percent	Katto
Late							130	8.7%	174	11.6%	1.3
Coexistence							309	<mark>20.6%</mark>	1097	<mark>73.1%</mark>	<mark>3.6</mark>
Early							1059	70.6%	229	15.3%	0.2
All dead							2	0.1%	0	0.0%	
Total							1500		1500		
Add observation constraints	+						309	20.6%	1097	73.1%	3.6
	+	+					98	6.5%	620	41.3%	6.3
	+	+	+				85	5.7%	618	41.2%	7.3
	+	+	+	+			23	1.5%	572	38.1%	24.9
	+	+	+	+	+		23	1.5%	502	33.5%	21.8
	+	+	+	+	+	+	21	<mark>1.4%</mark>	495	<mark>33.0%</mark>	<mark>23.6</mark>

Northwest

Parameter tradeoffs align with niche-based coexistence theory

Niche

partitioning

divergence in strategy

Relative difference should not be considerable

• Large difference in SLA more likely favors the early PFT

Some degree of differences should exist

- Small difference in SLA more likely favors the late PFT
- For Exp-CTR, coexistence have intermediate differences in SLA, V_{cmax} , WD, M_{bk} and L_{leaf}
- For Exp-ML, coexistence have intermediate differences in SLA, V_{cmax} , and L_{leaf}

M_bk and WD show large difference but they show tradeoff to make coexistence

Niche-based coexistence theory

Parameter relative difference (%) between early PFT and late PFT

Northwest

Parameter tradeoffs align with niche-based coexistence theory

 Environmental Filtering
convergence in strategy
Niche partitioning
divergence in strategy

Relative difference should not be considerable

Large difference in SLA more likely favors the early PFT

Some degree of differences should exist

- Small difference in SLA more likely favors the late PFT
- For Exp-CTR, coexistence have intermediate differences in SLA, V_{cmax} , WD, M_{bk} and L_{leaf}
- For Exp-ML, coexistence have intermediate differences in SLA, V_{cmax} , and L_{leaf}

M_bk and WD show large difference but they show tradeoff to make coexistence

Niche-based coexistence theory

Parameter relative difference (%) between early PFT and late PFT

Pacific Northwest

Parameter tradeoffs align with niche-based coexistence theory

Difference should not be considerable

Large difference in SLA more likely favors the early PFT

Some degree of differences should exist or balance

- Small difference in SLA more likely favors the late PFT
- For Exp-CTR, coexistence have intermediate differences in SLA, V_{cmax}, WD, M_{bk} and L_{leaf}
- For Exp-ML, coexistence have intermediate differences in SLA, V_{cmax}, and L_{leaf}

 M_bk and WD show large difference but they show tradeoff to make coexistence

19

Environmental

Filtering

Niche

partitioning

divergence in strategy

convergence in strategy

Parameter relative difference (%) between early PFT and late PFT

20

Email: Lingcheng.li@pnnl.gov

Li, L., Fang, Y., Zheng, Z., Shi, M., Longo, M., Koven, C., Holm, J., Fisher, R., McDowell, N., Chambers, J., and Leung, R.: A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1286, 2023. (Accepted)

Acknowledgement

This research was supported as part of the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

U.S. DEPARTMENT OF ENERGY

Office of Science