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Challenge in modeling PFTs coexistence in FATES 

• FATES is a “cohort-based" VDM model
represent competition/coexistence between different plant functional types (PFTs)

• The challenge is to reasonably simulate the coexistence of PFTs

Each tile contains cohorts of plants, defined by PFT and size
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Coexistence theory and modeling
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Research goal and testbed

Research goal
Utilize machine learning (ML) to 
o alleviate the challenge of modeling PFTs coexistence
o reduce model errors against observations

XGBoost SHAP

Testbed
o a tropical forest site: Manaus
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Model configuration

Two PFTs represented in FATES

o Early vs. late successional broadleaf evergreen tropical tree

o 11 parameters, trait ranges based on tropical tree measurements
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Overall flowchart and research questions

P1. Parameter sampling

P2. Initial FATES experiments

P3. Build ML models and sensitivity analysis

P4. Parameter selection and validation

Exp-OBS, consideration of observed trait 
relationships 

Exp-CTR

Exp-ML, ELM-FATES simulation using ML 
selected parameters

ML models train and test
SHAP importance analysis

Latin hypercube sampling, and tradeoffs
𝑉!"#$,&#'() > 𝑉!"#$,(#*&, 𝑆𝐿𝐴&#'() > 𝑆𝐿𝐴(#*&  
𝑀+,,&#'() > 𝑀+,,(#*&, 𝑊𝐷&#'() < 𝑊𝐷(#*&  
𝐿(&#-,&#'() < 𝐿(&#-,(#*&  

Specific research questions
• Q1: Whether observed trait relationships can 

improve PFTs coexistence? 

• Q2: Can simple parameter correlations be 
constructed to improve PFTs coexistence?

• Q3: Can ML selected parameter values 
improve PFTs coexistence?
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Q1 à Observed trait relationships cannot improve PFTs coexistence modeling 

Two experiment ensembles
• Exp-CTR, traits tradeoffs
• Exp-OBS, traits tradeoffs + observed trait relationships  
                        à degraded the PFT coexistence simulations 

Koven et al. (2020) and Longo et al. (2020):
𝑀!" = 0.0082×𝑒($.$&'(×*!"#$)      (1)

𝐿,-./ = 0.0001×𝑆𝐿𝐴(01.(1)             (2)

𝑊𝐷 = −0.583× ln 𝑆𝐿𝐴 − 1.6754     (3)

PFT coexistence :
Biomass ratio between early PFT 
and total biomass

𝐵𝑅789 ∈ 0.9, 1.0 , “early” 
𝐵𝑅789 ∈ 0.1, 0.9 , “coexistence” 
𝐵𝑅789 ∈ [0.0, 0.1), “late” 

coexistence
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Based on Exp-CTR, build empirical simple parameter correlations

★ optimal case: 
1) coexistence,
2) relative bias of 

water/energy/carbon < 15% 

• 𝑆𝐿𝐴!"#$ > 0.35×𝑆𝐿𝐴$"%!& + 0.003 
• 𝑉'("),+,-- < −4800×𝑆𝐿𝐴+,-- + 	100
• 𝑊𝐷+,-- > 55×𝑆𝐿𝐴+,-- − 1.3

Within these constrained parameter spaces, 

• Coexisting cases increases from 20.6% to 32.6%
• 67.4% is still either early or late
• Optical cases account only about 2.3%

Q2 à Simple constructed correlations are also insufficient
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Build ML surrogate models

In Exp-CTR, 1500 samples of 
• Xn, parameters and their difference 

e.g., 𝑉!"#$,&#'(), 𝑆𝐿𝐴*+,,, 

• Yi, ELM-FATES outputs 
e.g., ET, SH, GPP, AGB, BW

Build emulators
𝑌+ 	= 	 𝒇+ 	(𝑋,, 𝑋-, 𝑋., … ) 

Machine learning algorithm
e.g., XGBoost (Chen et al., 2016)

SHAP (SHapley Additive exPlanations, 
Lundberg et al., 2017)

Parameters selection
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ML surrogate models have good performance

• 6 XGBoost surrogate models: ET, SH, BW, GPP, AGB, and 𝐵𝑅&-.
• Overall good performance in training and testing samples

• AGB and 𝐵𝑅&-. are relatively difficult to emulate

coexistence
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Which parameters are important

• Only 3 features dominate the prediction of ET, SH, BW, and GPP
𝑉/012,31456 
𝑆𝐿𝐴31456 
𝐿5317,31456 
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Which parameters are important

• More than 6 features are most important for predicting AGB and 𝐵𝑅3-8
• Trait parameter differences between early and late PFT are very important

e.g, 𝑆𝐿𝐴9+77, 𝑉𝑐𝑚𝑎𝑥9+77

coexistence
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Parameter selection using ML surrogate models 

ET, SH, 

BW, GPP, 

AGB, 𝐵𝑅$.#
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ML selected parameter values largely improve FATES simulation

• ML selected parameters à better capture observations

• ML selected parameters à more well-coexistent runs 

Model bias Biomass ratio 

Coexistence

Early

Late

ML surrogate model prediction
Exp-ML (FATES simulation with ML selected parameter )

Exp-CTR (initial ELM simulations)
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ML selected parameter values largely improve FATES simulation

Compared with Exp-CTR and Exp-ML have

• 3.6 times more coexistence cases, 20% à73%

• 23.6 times more optimal cases, 1.4%à33%, with higher model accuracy
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Parameter tradeoffs align with niche-based coexistence theory

Some degree of differences should exist
• Small difference in SLA more likely favors the late PFT
• For Exp-CTR, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, 𝑊𝐷, 𝑀>? and 𝐿@7<A 

• For Exp-ML, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, and 𝐿@7<A 

𝑀_𝑏𝑘 and 𝑊𝐷 show large difference but they show tradeoff to make coexistence

Parameter relative difference (%) between early PFT and late PFT 

Relative difference should not be considerable
• Large difference in SLA more likely favors the early PFT
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Parameter tradeoffs align with niche-based coexistence theory

Some degree of differences should exist
• Small difference in SLA more likely favors the late PFT
• For Exp-CTR, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, 𝑊𝐷, 𝑀>? and 𝐿@7<A 

• For Exp-ML, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, and 𝐿@7<A 

𝑀_𝑏𝑘 and 𝑊𝐷 show large difference but they show tradeoff to make coexistence

Parameter relative difference (%) between early PFT and late PFT 

Relative difference should not be considerable
• Large difference in SLA more likely favors the early PFT
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Parameter tradeoffs align with niche-based coexistence theory

Some degree of differences should exist or balance
• Small difference in SLA more likely favors the late PFT
• For Exp-CTR, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, 𝑊𝐷, 𝑀>? and 𝐿@7<A 

• For Exp-ML, coexistence have intermediate differences in 𝑆𝐿𝐴, 𝑉:;<=, and 𝐿@7<A 

𝑀_𝑏𝑘 and 𝑊𝐷 show large difference but they show tradeoff to make coexistence

Parameter relative difference (%) between early PFT and late PFT 

Difference should not be considerable
• Large difference in SLA more likely favors the early PFT
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Take Home Message

Vegetation demography models 
across different ecosystems 
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