Progress Towards an Icepack Model Case Study for the MOSAiC Expedition

David Clemens-Sewall¹, Marika Holland¹, Angela Bliss², Chris Cox³, Michael Gallagher³, Jennifer Hutchings⁴, Bonnie Light⁵, Don Perovich⁶, Chris Polashenski^{6,7}, Kirstin Schulz⁸, Maddie Smith⁹, Melinda Webster⁵ ¹NCAR, ²NASA, ³NOAA, ⁴OSU, ⁵UW, ⁶Dartmouth, ⁷CRREL, ⁸UT, ⁹WHOI

Outline

- Motivation
- Background
- Results
- Sensitivity to initial conditions, snow thermal conductivity, oceanic forcing, and thermodynamic parameterization
- Offsetting errors
- Conclusions and next steps

Motivation

Direct comparison between coupled-climate model output and observations is challenging because of internal variability and the potential for offsetting errors.

Motivation

Direct comparison between coupled-climate model output and observations is challenging because of internal variability and the potential for offsetting errors.

Background – Single Column Modeling

Atmosphere Measurements Snow and Ice Measurements Icepack SCM Atmosphere Heat, Momentum and Mass Fluxes Prognostic perature & Salinity Profiles Snow Thickn Photo: D. Clemens-Sewall Ice and snow **Complex Radiation** Vielt Ponds Sea Ice Thicknes ^{Class 5} **Ocean Measurements** Model Validation Sea Ice Radiation Absorptio Snow Depth (m) 1.0 in Snow Model Obs. Class 3 Class 2 Class 1 Sea Ice **Open Wate** Fraction(s) Fraction Zampieri (2021) 02 09 16 23

Dec

Jan 2020

30

13

06

20

27

Photo: J. Schaffer

Background – Icepack sea ice model

Zampieri (2021)

Background – MOSAiC Expedition

Results

Sensitivity to initial conditions

Sensitivity to initial conditions

Sensitivity to snow thermal conductivity

Sensitivity to oceanic forcing

Different Parameterizations

Offsetting errors

Offsetting errors

Katlein 2020

Conclusions and next steps

- Conclusions:
 - Amount of ice growth simulated by Icepack is consistent with MOSAiC observations (when prescribing snow).
 - Using a consistent ice thickness dataset is critical to interpretation.
 - Surprisingly low sensitivity to heat flux convergence into mixed layer.
 - Too little congelation growth is offset by too much frazil growth.
- Next steps:
 - Snow redistribution on variable snow and ice topography
 - Dynamics forcing
 - Melt season processes
- Contact: dcsewall@ucar.edu

Backup

ktherm	init_i	ce	init_sno	qdp	ustar_min	fhocn	frazil	congel	growth
	2	0.67	0.08	0	0.0005	-2.84	0.19	0.39	0.58
	2	0.67	0.08	-0.1	0.0005	-2.86	0.18	0.39	0.57
	2	0.67	0.08	-1	0.0005	-3.1	0.14	0.42	0.56
	2	0.67	0.08	-10	0.0005	-5.5	0.02	0.47	0.49
	2	0.67	0.08	-0.1	0.005	-2.86	0.18	0.39	0.57
	2	0.67	0.08	-1	0.005	-3.1	0.14	0.42	0.56
	2	0.67	0.08	-3	0.005	-3.6	0.05	0.47	0.52
	2	0.67	0.08	-10	0.005	-8.81	0.02	0.4	0.42
	2	0.67	0.08	-0.1	0.05	-2.86	0.18	0.39	0.57
	2	0.67	0.08	-1	0.05	-3.1	0.14	0.42	0.56
	2	0.67	0.08	-10	0.05	-10	0.02	0.38	0.4
	2	0.57	0.08	-1	0.005	-3.2	0.17	0.44	0.61
	2	0.77	0.08	-1	0.005	-2.96	0.13	0.41	0.54
	2	0.67	0.06	-1	0.005	-3.26	0.15	0.45	0.6
	2	0.67	0.1	-1	0.005	-2.89	0.13	0.4	0.53
	1	0.67	0.08	-1	0.005	-0.84	0.01	0.49	0.5