

Pacific Northwest

Arctic precipitation in circulationconstrained CESM1/2 simulations and the role of meridional moisture transport

June 13, 2023

Ian Baxter^{1,2}, Qinghua Ding¹, Hailong Wang²,

& Thomas Ballinger³

¹Department of Geography, University of California Santa Barbara, CA ²Pacific Northwest National Laboratory, Richland, WA

³International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK

PNNL is operated by Battelle for the U.S. Department of Energy

CESM Polar Climate Working Group

Increasing precipitation rates in the Arctic

- Polar Hydrological changes greater because of small initial precipitation rates with larger warming
- Polar Hydrological Change
 - Moisture availability hypothesis (Singh et al. 2017, Harrington et al. 2021)
 - Radiative hypothesis (Pithan & Jung 2021, Bonan et al. 2023)
 - ✓ Held & Soden (2006)
- Previous water tagging studies have looked only at decadal means with the **CESM's inherent circulation**

latitude (° N)

Pithan & Jung (2021)

Experiment Design

- Eurasia/Africa	CESM1 water tagging + I
- N. America	• Nudged U,V,T (1979-20
- S. Atlantic	 Nudged Q in the lowest surface
- N. Atlantic	 AMIP-style
- N. Pacific	ERA5 SST/SEAICE
- N. Pacific	Goals:
- Arctic (local)	 Replicate hydrological of ERA5 using nudging &

• Characterize trends in source region moisture contributions to precipitation changes

CESM1/2 Nudging Simulations

- Fully-coupled
- Same fixed CO2 concentrations
- Winds nudged to same ERA5 horizontal winds (60-90N, 1979-2020)

nudging

)22) t model level near

changes from prescribed surface

Annual Mean precipitation in CESM w/ ERA5 winds

- Annual mean total precipitation rate from ERA5 well replicated by iCESM1 with nudging
- Temperature plays a larger role than winds

Total Precipitation relative to 1980-2000

Precipitation in CESM w/ ERA5 winds

Total Precipitation Annual Cycle

Early Summer

- Nudging winds captures good agreement between CESM1/2 simulations
- Fall
 - Temperature nudging & prescribed surface produces less precipitation
- Winter/Spring
 - Nudging winds captures good agreement between CESM1/2 simulations

Annual Cycle vs. Trends

Eurasia/Africa

- N. America

- S. Atlantic

N. Atlantic

N. Pacific

- N. Pacific

Arctic (local)

- Land sources dominate in summer (~65%)
- Remote ocean sources (North Atlantic) dominate in other seasons (~68%)
- Relative changes favor local sources in summer and remote ocean in other seasons

Linear Trends in Land-based pathways

- Trends in circulation patterns control the changes in contributions:
 - Spring/Summer
 - ✓ Increase in Eurasian/North American sourced moisture

• Fall/Winter:

✓ Weak transport (lack of winds or moisture sources)

Linear trends in SLP (shading) and land-sourced IVT (vectors)

Linear Trends in Remote Ocean-based pathways

- Trends in circulation patterns control the changes in contributions:
 - Summer
 - ✓ Same pathways with weaker magnitudes
 - Fall/Winter:
 - ✓ Stronger N. Atlantic signal

Linear trends in SLP (shading) and ocean-sourced IVT (vectors)

- Nudging winds leads to good agreement between CESM1 and CESM2 in early summer but not in colder months
 - Temperature nudging better replicates annual mean ERA5 precipitation
- The contributions to the annual cycle are similar to the trends
- Relative changes favor increased local and N. American role in summer and role of remote oceans (N. Atlantic) in fall/winter
- Historical precipitation changes require consideration of moisture availability changes on seasonal/monthly timescales

Email: itbaxter@ucsb.edu

