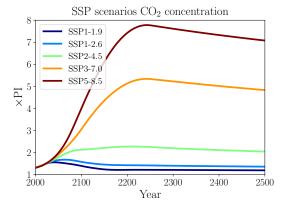
Arctic amplification and its seasonal migration from $1/8 \times$ to $8 \times CO_2$ forcing

Shih-Ni Zhou¹, Yu-Chiao Liang¹, **Ivan Mitevski²**, Lorenzo Polvani²

¹National Taiwan University

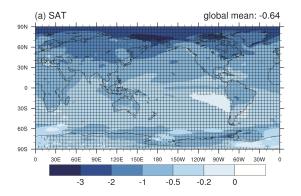
²Columbia University, NYC

CESM Polar Climate WG


June 13, 2023

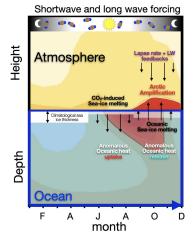
Outline

- Liang et al., NPJ, 2022: Arctic amplification, and its seasonal migration, over a wide range of abrupt CO₂ forcing
- Zhou et al., submitted: Stronger Arctic Amplification Produced by Decreasing, not increasing, CO₂ Concentrations


Arctic amplification (AA) at high CO_2

- SSP5-8.5 scenario projects around $4 \times CO_2$ by 2100 and $8 \times CO_2$ by 2200
- Most previous AA studies are focused on $2 \times CO_2$ and $4 \times CO_2$

Meinshausen et al., 2019


Comparing Scenarios of CO_2 reduction and increase

Jiang et al., 2020

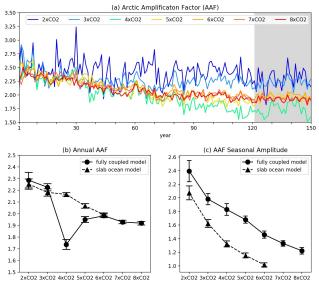
• In the analysis of the atmospheric impact of aerosols, the cooling is the largest in the Arctic regions.

Anomalous Seasonal Ocean Heat Uptake/Release

Chung et al., 2020

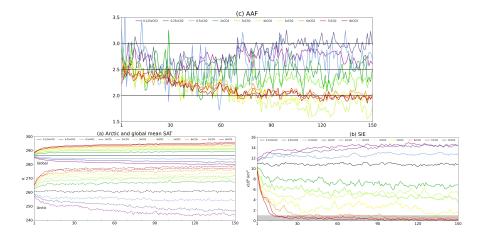
• The seasonality of sea ice directly influences the thermal storage of the oceans, leading to pronounced seasonality in the energy transfer mechanisms within the Arctic region.

Model Runs

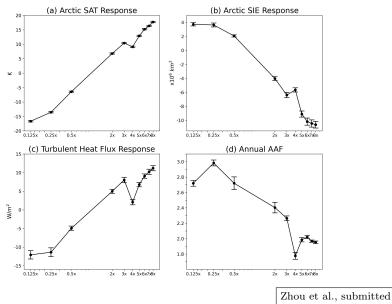

Model:

• **CESM1-LE**: 30-level CAM5 (1°) and 60-level POP2 (1°)

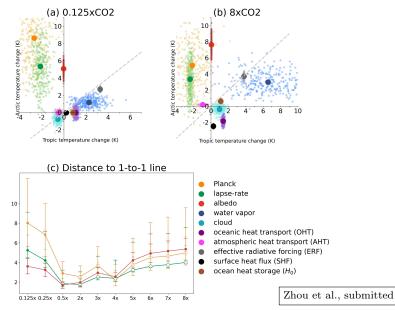
Experiments


- Fully coupled abrupt: $1/8 \times$, $1/4 \times$, $1/2 \times$, $2 \times$, $3 \times$, $4 \times$, $5 \times$, $6 \times$, $7 \times$, $8 \times CO_2$ for 150 years
- Slab ocean: abrupt $1\times$, $2\times$, $3\times$, $4\times$ $5\times$, and $6\times CO_2$ for 60 years

AAF weakens at higher CO_2 levels

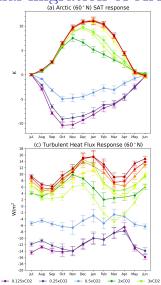

Liang et al., 2022

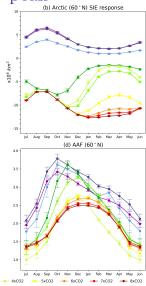
The cold AAFs are larger than the warm AAFs



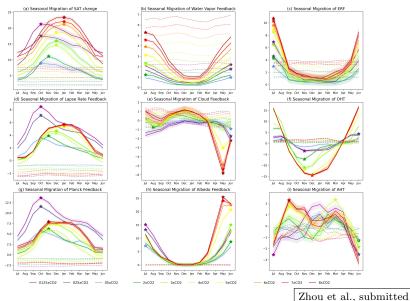
Zhou et al., submitted

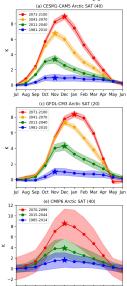
Asymmetric Responses in Arctic Amplification



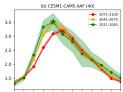

PL, LR and AL feedbacks are main contributors to AAF

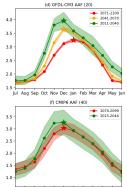
Seasonal migration of AAF peak


- AAF peak in CO₂ increase moves from November to December of January
- CO₂ decrease levels cannot migrate the peak of AAF earlier than October



Zhou et al., submitted


Seasonality for feedbacks, ERF, AHT, and OHT


Seasonal migration in 21st century

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Liang et al., 2022

Summary

- Weaker AA at higher CO₂ levels
- Decreasing CO₂ concentrations produce stronger AA than increasing CO₂ concentrations
- Peaks of warm AA shift gradually from November to December or January as the CO₂ forcing strength enhances
- The seasonal shift in AA emerges in the 21st century in high-CO₂ emission scenario simulations
- **Peaks of cold AA** are locked in October bounded by the maximum sea-ice increase in September.
- Planck, lapse-rate, and albedo feedbacks are the main contributors to producing AAs forced by CO₂ increase and reduction