Examining the response of cirrus cloud microphysics to volcanic aerosol emissions in satellite observations t_{1-3} years) and CESM2

Lin Lin, Xiaohong Liu

Department of Atmospheric Sciences

2023 CESM Workshop 12-14 June 2023

Objective

 Investigate how volcanic aerosols change the microphysical properties of cirrus clouds using satellite observations.

 Evaluate climate model simulation of volcanic aerosol effects on cirrus clouds against observations.

Overview of Cirrus Cloud Formation

Homogeneous

FEW ICE-NUCLEATING PARTICLES

Heterogeneous

MANY ICE-NUCLEATING PARTICLES

Upper tropospheric ice clouds (e.g. cirrus/cirrostratus)

Many soluble aerosol particles take up water and freeze homogeneously to make a dense, longlived ice cloud.

(Murray, 2017)

e.g., liquid sulfate aerosol

e.g., volcanic ash particles (e.g., Steinke et al., 2011; Schill et al. 2015)

Overview of Cirrus Cloud Formation

Homogeneous

FEW ICE-NUCLEATING PARTICLES

Heterogeneous

MANY ICE-NUCLEATING PARTICLES

Upper tropospheric ice clouds (e.g. cirrus/cirrostratus)

Many soluble aerosol particles take up water and freeze homogeneously to make a dense, longlived ice cloud. A few ice crystals preferentially nucleate on INPs, grow, and precipitate.

(Murray, 2017)

e.g., liquid sulfate aerosol

e.g., volcanic ash particles (e.g., Steinke et al., 2011; Schill et al. 2015)

Aerosol Extinction during Volcanic & Unperturbed Periods

Using CALIPSO L3 stratospheric aerosol profile product

Southern Hemisphere Midlatitudes

Aerosol Extinction during Volcanic & Unperturbed Periods

2009/Jun Sarychev: 40-60N, 180W-180E

Aerosol Extinction during Volcanic & Unperturbed Periods

Stratospheric Aerosol Subtyping Occurrence

Observed Changes in Ice Microphysics

Observed Changes in Ice Microphysics

Ash-rich scenario

Shading area: 1 std dev

- N_i decreases by <u>60-80% (60-80 L⁻¹);</u>
- *r_{eff}* increases from 17um to 20um (~12% increase);
- Indicative of heterogeneous freezing on ash suppressing homogeneous freezing;

"Negative Twomey effect"

Observed Changes in Ice Microphysics

Ash-rich scenario

Shading area: 1 std dev

- N_i decreases by <u>60-80% (60-80 L⁻¹);</u>
- r_{eff} increases from 17um to 20um (~12% increase);
- Indicative of heterogeneous freezing on ash suppressing homogeneous freezing;

"Negative Twomey effect"

Ash-poor scenario

- N_i increases slightly by about <u>26% (~30L⁻¹</u>) (within 1 σ range);
- *r_{eff}* remains unchanged;
- Indicative of homogeneous freezing of enhanced sulfate produced by eruption;

Model configuration & Experiment setup

Based on our observational findings, we examine the response of cirrus cloud microphysics to volcanic aerosol emissions in CESM2.

Experiment	Setup	Notes	Configuration
09Sa	CESM2.2 + WACCM6	Historical emission file	0.9° x 1.25° horizonal resolution; 88 vertical layers; Nudged u,v, temperature;
09Saoff		Same as 09Sa except that 2009 Sarychev volcanic SO ₂ emission <u>is</u> <u>excluded</u>	
15Ca		SSP245 emission file	
15Caoff		Same as 15Ca except that 2015 Calbuco volcanic SO ₂ emission <u>is excluded</u>	

Note: all model simulations now do NOT consider volcanic ash emission.

2009 Sarychev eruption Stratospheric aerosol optical depth (SAOD)

Simulated meridional SAOD distribution as time, compare with CALIPSO L3 Stratospheric aerosol profile product

Cloud signature after 2009 Sarychev eruption(ash-rich case)

Simulated ice crystal number (Ni)

Cloud signature after 2009 Sarychev eruption(ash-rich case)

Simulated ice crystal number (Ni)

2015 Calbuco eruption Stratospheric aerosol optical depth (SAOD)

Simulated meridional SAOD distribution as time, compare with CALIPSO L3 Stratospheric aerosol profile product

Cloud signature after 2015 Calbuco eruption(ash-poor case)

Simulated ice crystal number (Ni)

L -1

Observations show ~26% increases in N_i after 15Ca (volcanic ash-poor).

Absent volcanic ash emission. Model results are qualitatively consistent with observations.

Summary & Discussion & Outlook

- $\circ~$ Satellite observations show
 - (1) a substantial drop (60-80%) in N_i for the ash-rich case: heterogeneous ice nucleation of volcanic ash suppresses homogeneous ice nucleation of sulfate to reduce total number of N_i (negative Twomey effect);
 - (2) a slight (~26%) increase in N_i for the ash-poor case: enhanced homogeneous freezing of sulfate with weak sensitivity.
- Model simulated volcanic aerosol indirect effect from the 2015Ca case (ash-poor) qualitatively agree with observations, while from the 2009Sa case (ash-rich) disagrees with observations
- Incorporate volcanic ash in GCMs as INPs to account for the missing ice nucleation mechanism and estimate cloud radiative forcing change in response to eruptions.

linlin@tamu.edu

- Lin L., Liu X. et al., 2023: Abrupt changes in post-eruption cirrus microphysics reveal ice nucleation on volcanic ash, in prep.
- Lin L., Liu X. et al., 2023: Examining the response of cirrus cloud microphysics to volcanic aerosol emissions in CESM2 against satellite observations, in prep.