An overview of gravity wave tuning in WACCM7

Nick Davis

June 13, 2023

Background on the spectral element dynamical core

- CESM's workhorse model
 - Intended to be the central configuration of CESM for future intercomparison projects, community use, and science
- Spectral element dynamical core
 - Quasi-uniform grid spacing
 - Finite volume grid crunch at the poles
 - Supports regional refinement
 - Superior computational scaling and throughput
 - Finite volume limited by the need for each core to see a full longitude strip

Finite Volume (FV) [regular lat-lon]

Spectral Element (SE) [cubed-sphere]

Background on the spectral element dynamical core

- Spectral element dynamical core presents unique challenges
 - Gravity wave tuning on a quasi-uniform grid
 - Less diffusive than finite volume dynamical core
- Workhorse configuration presents unique benefits
 - WACCM inherits tropospheric tuning
 - Only need to focus on gravity wave and sponge layer tuning

Finite Volume (FV) S [regular lat-lon]

Spectral Element (SE) [cubed-sphere]

Rapidly tuning gravity wave parameters

NCAR

Strategy

- Key parameters
 - Orographic gravity wave forcing: effgw_rdg_beta(_max)
 - *Convective gravity wave forcing*: effgw_beres
 - Frontal gravity wave forcing: frontgfc, taubgnd, front_spectrum_width*
- General approach
 - Identify 2-4 changes that may be needed based on last round's best simulation
 - Perform one simulation for each change, with only that change ("isolated")
 - Perform one simulation with all changes ("combined")

*New, adjusts the half-width of the spectrum

What does each parameter do to the zonal wind in DJF?

NCAR

UCAR

Effects of each parameter

- All project onto the tropical winds
- Weakens vortex: +oro, -taubgnd
- Shifts vortex: +frontgfc, -spectrum, -conv
- Shifts/strengthens mesopause: -taubgnd, +frontgfc, -spectrum

+oro	Increase oro forcing (1.3 to 1.6)
-taubgnd	Reduce background frontal forcing (1.3 to 1.1e-15)
+frontgfc	Increase frontal trigger threshold (1.25 to 1.5e-5)
-spectrum	Narrow frontal spectrum (30 to 24 m/s)
-conv	Reduce convective forcing (0.8 to 0.55)

What does each parameter do to the zonal wind in JJA?

NCAR

UCAR

Effects of each parameter

- All project onto the tropical winds
- Weakens vortex: +oro
- Strengthens vortex: -taubgnd
- Shifts vortex: +frontgfc, -conv
- Shifts/strengthens mesopause: -taubgnd, +frontgfc, -spectrum

+oro	Increase oro forcing (1.3 to 1.6)
-taubgnd	Reduce background frontal forcing (1.3 to 1.1e-15)
+frontgfc	Increase frontal trigger threshold (1.25 to 1.5e-5)
-spectrum	Narrow frontal spectrum (30 to 24 m/s)
-conv	Reduce convective forcing (0.8 to 0.55)

What does each parameter do to the mesopause?

- All except convective tuning project onto the mesopause
- Improves the mesopause vertical structure: -spectrum
- Cools the mesopause: -taubgnd, + frontgfc

+oro	Increase oro forcing (1.3 to 1.6)
-taubgnd	Reduce background frontal forcing (1.3 to 1.1e-15)
+frontgfc	Increase frontal trigger threshold (1.25 to 1.5e-5)
-spectrum	Narrow frontal spectrum (30 to 24 m/s)
-conv	Reduce convective forcing (0.8 to 0.55)

NCAR

UCAR

Summary

- Adjusting gravity wave parameters is not always additive
 - Wave filtering
 - Feedbacks with the meridional circulation and chemistry
- Implementing Holtslag-Boville diffusion above CLUBB top stabilizes WACCM7
- Some issues, like the SH vortex tilt in observations, may be associated with horizontal gravity wave propagation (do we try to tackle this bias, or leave it be)
- New parameter, frontal wave spectrum half-width, replaces the existing hard-coded frontal wave spectrum half-width
 - More precise control of mesopause behavior
- Impacts of each parameter and how specific model biases can be addressed will be put into a white paper for internal and external community use
- This seems like a good space for an optimization/machine learning approach

