Quantifying the Influence of Stomatal Behavior on Photosynthesis

CESM Workshop I June 14, 2023
Amy Liu ${ }^{1}$, Claire Zarakas ${ }^{1}$, Abigail Swann ${ }^{1}$
Collaborators: Gabriel Kooperman ${ }^{2}$, Alana Cordak ${ }^{2}$, Ashley
Cornish ${ }^{2}$, Christopher Still ${ }^{3}$, Linnia Hawkins ${ }^{4,5}$, Jim
Randerson ${ }^{6}$, Charles Koven ${ }^{7}$, Forrest Hoffman ${ }^{8}$

Plants have stomata that regulate gas exchange with the atmosphere

Tree

Changes in evaporative resistance affects surface temperature

The Medlyn model represents stomatal conductance in CLM

The Medlyn slope is a fitted parameter based on leaf-level observations

$g_{1 M}$ has a varied spatial distribution

Spatial distribution of Default $g_{1 M}$ values

There is variability across + within plant types

$$
g_{s}=g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}}
$$

There is variability across + within plant types

$$
g_{s}=g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}}
$$

There is variability across + within plant types

 $g_{s}=g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}}$
... can lead to large variance for carbon and water fluxes.

One Medlyn slope value is used to represent each plant tvpe in CLM
 $$
g_{s}=g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}}
$$

12 Medlyn Slope Values for the 10 - Broadleaf Evergreen Tropical Tree

One Medlyn slope value is used to represent each plant type in CLM

12 Medlyn Slope Values for the
10 - Broadleaf Evergreen Tropical Tree

> What happens if we use a different
> Medlyn slope value?

Focusing on the Medlyn slope parameter ($g_{1 M}$)

$$
\begin{aligned}
g_{s} & =g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}} \\
W U E & =\frac{A_{n}}{\text { Transpiration }} \propto \frac{A_{n}}{\sqrt{D_{s}}} \\
g_{1 M} & \propto \frac{1}{A_{n}} \propto \frac{1}{W U E}
\end{aligned}
$$

Focusing on the Medlyn slope parameter ($g_{1 M}$)

$$
\begin{aligned}
g_{s} & =g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}} \\
W U E & =\frac{A_{n}}{\text { Transpiration }} \propto \frac{A_{n}}{\sqrt{D_{s}}} \\
g_{1 M} & \propto \frac{1}{A_{n}} \propto \frac{1}{W U E}
\end{aligned}
$$

Focusing on the Medlyn slope parameter ($g_{1 M}$)

$$
\begin{aligned}
g_{s} & =g_{0}+1.6\left(1+\frac{g_{1 M}}{\sqrt{D_{s}}}\right) \frac{A_{n}}{c_{s}} \\
\text { WUE } & =\frac{A_{n}}{\text { Transpiration }} \propto \frac{A_{n}}{\sqrt{D_{s}}} \\
g_{1 M} & \propto \frac{1}{A_{n}} \propto \frac{1}{W U E}
\end{aligned}
$$

$g_{1 M}$ has a varied spatial distribution

Spatial distribution of Default $g_{1 M}$ values

Our perturbed $g_{1 M}$ values have large spread within and across PFTs

Multiple factors can affect stomatal conductance

```
Land-Atmosphere Coupling
```



```
atmospheric feedbacks modify temperature and precipitation impacts of land surface change
```


Multiple factors can affect stomatal conductance

Multiple factors can affect stomatal conductance

Comparing two configurations

Comparing two configurations

Summary of runs (mostly not discussed today)

1x Pre-Industrial CO_{2}	Land-Atmosphere (coupled)	Dynamic Leaf Area	dotam
			Hip
		Fixed Leaf Area	Datam
			nen
	Land Only (uncoupled)	Dynamic Leaf Area	ditant
			min
		Fixed Leaf Area	comal
			Hein
2x Pre-Industrial CO_{2}	Land-Atmosphere (coupled)	Dynamic Leaf Area	daman
			men
		Fixed Leaf Area	Dotant
			men
	Land Only (uncoupled)	Dynamic Leaf Area	domat
			Hepr
		Fixed Leaf Area	ditan
			meip

Comparing two configurations

Comparing two configurations

Comparing two configurations

Photosynthesis decreases for simple high $g_{1 M}$ case

Δ Photosynthesis $0\left(\mathrm{~g} \mathrm{CO}_{2} \mathrm{~m}^{-2}\right.$ year ${ }^{-1}$)

Photosynthesis decreases for both high $g_{1 M}$ cases

Complex: Photosynthesis High - Default $g_{1 M}$

APhotosynthesis

Photosynthesis decreases for both high $g_{1 M}$ cases

Complex: Photosynthesis High - Default IM $_{1 M}$

| -880 | -704 | -528 | ${ }^{-352}$ | -176 | 0 | ${ }^{176}$ | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Differences in photosynthetic response for high $g_{1 M}$ cases are largely in boreal regions

Photosynthesis Sign Change Map between Simple and Complex for High - Default $g_{1 M}$

Photosynthesis regionally varies for the simple low $g_{1 M}$ case

Δ Photosynthesis
$\begin{array}{lllllllllll}-970 & -776 & -582 & -388 & -194 & 0 & 194 & 388 & 582 & 776 & 970\end{array}\left(\mathrm{~g} \mathrm{CO}_{2} \mathrm{~m}^{-2} \mathrm{year}^{-1}\right)$

Photosynthesis also has different responses for low $g_{1 M}$ cases

Complex: Photosynthesis Low - Default $g_{1 M}$

Photosynthesis changes outside of the tropics are more comparable when normalized by $g_{1 M}$ difference from default

Complex: Photosynthesis Low - Default $g_{1 M}$

Differences in the sign of photosynthetic response for low $g_{1 M}$ cases are largely clustered in the Amazon, central NA, and boreal regions

Photosynthesis Sign Change Map between Simple and Complex for Low - Default $g_{1 M}$

Zoom in on the Amazon

Photosynthesis Sign Change Map between Simple and Complex for Low - Default $\boldsymbol{g}_{1 M}$

In the simple low $g_{1 M}$ case, photosynthesis increases as expected in the Amazon

With a coupled atmosphere and dynamic LAI, photosynthesis unexpectedly decreases in the Amazon

Simple:
Photosynthesis

With a coupled atmosphere and dynamic LAI, photosynthesis unexpectedly decreases in the Amazon

Photosynthesis increases for simple and decreases for complex low $g_{1 M}$

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

Low $g_{1 M}$ consistently decreases stomatal conductance (stomatal closure)

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

Transpiration decreases as expected with stomatal closure

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

The heat fluxes also change as expected

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

(39\% Decrease in simple)

(17\% Decrease in simple)

Increase in WUE decreases soil water stress and increases water availability

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

In the complex case, large increase in temperature and VPD decreases photosynthesis

Variable \% Differences for Low - Default $g_{1 M}$ in the Amazon

Zoom in on central North America

Photosynthesis Sign Change Map between Simple and Complex for Low - Default $\boldsymbol{g}_{1 M}$

Like in the Amazon, photosynthesis increases in central NA for the simple low $g_{1 M}$ case

Simple:
Photosynthesis

Like in the Amazon, photosynthesis increases in central NA for the simple low $g_{1 M}$ case

In the complex low $g_{1 M}$ case, photosynthesis increases as expected

Medlyn Slope Parameter

Photosynthesis decreases for simple and increases for complex low $g_{1 M}$

Variable \% Differences for Low - Default $g_{1 M}$ in central NA

Photosynthesis increases for simple and decreases for complex low $g_{1 M}$

Variable \% Differences for Low - Default $g_{1 M}$ in central NA

Transpiration decreases more for the complex case

The heat fluxes change as expected

Variable \% Differences for Low - Default $g_{1 M}$ in central NA

Decrease in Latent Heat Flux
(3\% Decrease in minimal)

The simple case has much higher increase in water availability

Variable \% Differences for Low - Default $g_{1 M}$ in central NA

In the complex case, larger increase in temperature and VPD also increases photosynthesis

Variable \% Differences for Low - Default $g_{1 M}$ in central NA

Compared to the Amazon, there is greater \% Surface temperature increase, less increase in VPD, and less water availability increase (wrt to the simple case) \square plants in Central NA are more sensitive?

Zoom in on boreal Canada

Photosynthesis Sign Change Map between Simple and Complex for Low - Default $g_{1 M}$

In the simple low $g_{1 M}$ case, photosynthesis unexpectedly decreases for boreal Canada

Simple: Photosynthesis Low - Default $\boldsymbol{g}_{1 M}$

In the simple low $g_{1 M}$ case, photosynthesis unexpectedly decreases for boreal Canada

Simple: Photosynthesis Low - Default $g_{1 M}$

In the complex low $g_{1 M}$ case, photosynthesis increases as expected

Simple: Photosynthesis Low - Default $g_{1 M}$

Photosynthesis decreases for simple and increases for complex low $g_{1 M}$

Variable \% Differences for Low - Default $g_{1 M}$ in boreal Canada

Low $g_{1 M}$ consistently decreases stomatal conductance (stomatal closure)

Variable \% Differences for Low - Default $g_{1 M}$ in boreal Canada

Transpiration decreases as expected with stomatal closure, though not as much as the Amazon

Variable \% Differences for Low - Default $g_{1 M}$ in boreal Canada

The heat fluxes also change as expected

Variable \% Differences for Low - Default $g_{1 M}$ in boreal Canada

Not much changes in water availability

In the complex case, large increase in temperature and VPD increases photosynthesis

Variable \% Differences for Low - Default $\boldsymbol{g}_{1 M}$ in boreal Canada

To summarize

To summarize

- High Medlyn slope decreasing photosynthesis is consistent

Simple: Photosynthesis High - Default $g_{1 M}$

To summarize

- High Medlyn slope decreasing photosynthesis is consistent
- Low Medlyn slope effects on photosynthesis are regionally dependent

Simple: Photosynthesis High - Default $g_{1 M}$

To summarize

- High Medlyn slope decreasing photosynthesis is consistent
- Low Medlyn slope effects on photosynthesis are regionally dependent
- A coupled atmosphere enables the climate to respond differently

To summarize

- High Medlyn slope decreasing photosynthesis is consistent
- Low Medlyn slope effects on photosynthesis are regionally dependent
- A coupled atmosphere enables the climate to respond differently

- Photosynthesis is sensitive to the temperature changes depending on region

Thank you

Amy Liu ${ }^{1}$, Claire Zarakas ${ }^{1}$, Abigail Swann ${ }^{1}$

Collaborators: Gabriel Kooperman², Alana Cordak ${ }^{2}$, Ashley
Cornish ${ }^{2}$, Christopher Still ${ }^{3}$, Linnia Hawkins ${ }^{4,5}$, Jim
Randerson ${ }^{6}$, Charles Koven ${ }^{7}$, Forrest Hoffman ${ }^{8}$

Difference between simple and complex configuration

difference in FPSN for def-control cases 1xCO_2

