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What are the limits of TCRE?
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e “Climate restoration”
experiment
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Koven, C. D., Sanderson, B. M., & Swann, A. L. 150 300 years
(2023). Much of zero emissions commitment

occurs before reaching net zero emissions.

Environmental Research Letters, 18(1), 014017.



TCRE response would
be proportional to the
cumulative emissions
curve

AT=k(AG)

/

TCRE-like
response

150

300

years



CESM2 results
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e Canwe modlfy the d) Emissions which halt warming
TCRE framework to 580
account for these 8
Q 60
factors? .
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“RAZE (Rate of adjustment to Zero
Emissions)” describes the long term
emissions compatible with halting Frindlingstain. P and Alon. M. 2032, The mul- docadal
. response to net zero CO2 emissions and implications for
walrmin g emipssionstpolicty. Geophysical Researcf:j Let?ers,t

p.e2022GL101047.



G() = / E(n)dt
AT = I(E(AG + oEAz)
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TCRE-like Long term
adjustment
response (RAZE)

/EC+RA/E adds a long term linear
trend to the Impulse Response
Function
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e TCRE+RAZE can
represent long term
warming, but not ‘dip’ or
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So what are we missing?

e Most models also exhibit
transient effects in the
immediate aftermath of
the pulse (AGTP)

e [heycanbe+veor-ve
corrections to the
multi+decadal response

Joos, Fortunat, Raphael Roth, Jan S. Fuglestvedt, Glen P.

Peters, lan G. Enting, Werner Von Bloh, Victor Brovkin et al.

"Carbon dioxide and climate impulse response functions for
the computation of greenhouse gas metrics: a multi-model
analysis." Atmospheric Chemistry and Physics 13, no. 5
(2013): 2793-2825.
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Cumulative t E(t)
emissions AG(:):/E(t)dt
tO
Recent t
emissions R(t) =/E(l)dt
- time
T(t)

AT}E(AGMC_SAH;)\R) —
TCRE-like Short term .
response adjustment (DARE) time

Long term _ o« .
sdiustment (RAZE) DARE = “Delayed Adjustment to

Recent Emissions”



This model empirically
accounts for the
warming trajectory in
the idealised overshoot
(with some error)
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Temperature (K)

2.00 7

—— CESM2 simulation

L 75 | — TCRE+RAZE+DARE fit Deviations from TCRE i
' behaviour are seen
before net zero
1.50 1

IBEER On long timescales
with zero emissions,
IVER RAZE adjustment

dominates

0.75 1
The DARE contribution

2207 switches sign in the
negative emissions phase

0.25 A

0.00 1

—0.25 T

0 200 400 600 800 1000
Cumulative Emissions (PgC)




TCRE, DARE & RAZE
can be fitted from
existing ZECMIP
experiments

Emissions - ZECMIP 1000PgC/1pctCO2
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But what we currently
call TCRE can be a
mixture of transient
and permanent
effects
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Conclusions (Part 1)
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“ZEC” can be represented as a
combination of short term
adjustments to recent emissions

(DARE) and long term adjustments
(RAZE)

DARE has implications for the level
and timing of peak warming

“TCRE” can be a mix of permanent
and transient effects



Part 2 - The Grassi correction
(from an ESM perspective)

- — 1.0 e \We can use the pristine land
product used in Grassi et al
5 to partition Land sink into
managed and non-managed
components
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1pctCO2, CMIP6

—— Cumulative emissions (incl managed land)
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managed land



Undisturbed TCRE* (K/1000GtC)
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Cumulative emissions (incl
managed land) can be
reconciled with expected
warming levels by using an
‘undisturbed’ TCRE* which
excludes those Earth
System feedbacks
associated with managed
land

TCRE™ gives a higher
warming per unit emissions
due to exclusion of managed
land sink, with a
near-constant offset
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In scenarios, there is
more uncertainty
associated with the
managed land sink than
the pristine land sink



Mangged Land sink, ssp126

e Uncertainty in managed
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IAM/ESM accounting UNFCCC accounting L
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Undisturbed TCRE* (K/1000GtC)

Conclusions (Part 2)
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UNFCCC carbon accounting can
be simply related to temperature
targets through an alternatively
defined TCRE*

Uncertainties in land sink are
disproportionally larger in managed
areas - hence multi-model
agreement on TCRE™ is greater

This uncertainty is transferred into
the emissions space - with
evidence of significant scenario
dependency



Prioritized
emission-driven
scenarios in CMIP7?
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Perspective: A higher emphasis on
emissions-driven simulations for
CMIP77? (contact me if you'd like to

be involved)

Emissions/

land use
Policy
definitions pathway

Concentrations Climate effects Impacts
——— Resolved
it uncertainty in
“"“ L. concentration-
Implicit o driven scenarios
unresolved Resolved
uncertainty in uncertainty in
pathway emissions-driven

scenario



Draft proposal for .

emissions-driven
runs in CMIP7

bit.ly/emiscmip7

esim .. 5

Earth System 2 '
Models for =
the future 2 c

P 4

UKESM, CNRM, NorESM

Real/policy relevant runs
emission-driven piControl + e-HIST

e-scenarios-overshoot: (i) A high (e.g. 3°C) and (ii) low (e.g.
2.25°C) overshoot of GWL=2°C, with a return and
stabilization (zero-emission) at 2°C and possibly 1.5°C, with
speed of return to these levels determined by what is
feasible (runs likely extend beyond 2100)

e-scenarios-non-overshoot : (i) current policies (e.g. NDCs),
(i) strong mitigation, and (iii) current policies/promises
failing e.g. something like an RCP4.5 or 6.0 ? e.g. higher end.

Idealized

A linear increase of CO2 emissions from piControl with rates
either (i) a fixed CO2 emission rate (e.g. 10GtC/yr) or (ii) a
fixed warming rate (~0.2°C/decade), which equates to
XGtC/yr for each model derived from their respective TCRE
values. And then switch to zero emissions either at (iii) one
or more GWL levels and/or (iv) a fixed cumulative emission
e.g. 1000 GtC

Solutions oriented experiments.
e.g. regional afforestation, other modes of climate
restoration etc


https://docs.google.com/document/d/1NNostC0kRP9F5S18kslJSYkZ276ZfZ4Z/edit?usp=sharing&ouid=115282627437064326264&rtpof=true&sd=true
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CMIP7 Task Teams

Strategic Climate
Ensemble Model
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Climate
Forcings

Impacts and Adaptation
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Is the SSP-RCP
framework making
use of the effort
spent in developing
ESMs?

Shared socioeconomic pathways
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Sustainability Middle of Regional Inequality Fossil-fueled scenarios
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s Ens: initial condition ensemble
LTE: long-term extension

OS: overshoot



Different mitigation
strategies, with different
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