Implementation of an ultraviolet radiation damage function for phytoplankton in CESM2-MARBL

Joshua Coupe¹ and Nikki Lovenduski¹ Collaborators: Mike Levy², Kristen Krumhardt², Keith Lindsay², Chuck Bardeen³

> ¹ University of Colorado Boulder ² CGD and ³ACOM (NCAR)

Outline (hidden slide)

- 1. Introduction why this is important
 - a. research on impacts of UV radiation on phytoplankton
- 2. Ultraviolet radiation damage function from Cullen et al. (1992)
 - a. uses the diatom damage function from Cullen
 - b. how it's configured in TUV
 - c. how it's passed to POP->MARBL
 - d. how this damage function is propagated through the column
- 3. Results
 - a. Control run with and without UV inhibition
 - b. Halogen injection simulation compared to control run with UV inhibition
 - c. Attempt at including TUV-PAR: effect on NPP of using a different PAR
- 4. Conclusions and uses

Potential scenarios with enhanced surface UV radiation

- CFC induced destruction of stratospheric ozone (the Ozone Hole)
 - UV-phytoplankton laboratory studies based on this scenario (Cullen et al., 1992)
- Injection of smoke, dust, or sulfate aerosols into the stratosphere via:
 - nuclear war. (Bardeen et al., 2021)
 - wildfire producing pyrocumulonimbus clouds. (Solomon et al., 2022)
 - volcanic eruption. (Østerstrøm and Klobas et al., 2023)
 - asteroid impact. (Pierazzo et al., 2010)
- Halogen injection into the stratosphere via:
 - asteroid impact into seawater. (Pierazzo et al., 2010)

Sensitivity of phytoplankton to UV radiation

- Cullen et al. (1992) determined a biological weighting function for the inhibition of photosynthesis by UV radiation for the diatom *phaeodactylum sp*.
 - determined exponentially increasing sensitivity to UV-B radiation (280-320 nm)
- Response to UV-B is complicated by:
 - photorepair and accumulation of UV-B mitigating flavonoids at low UV-B levels.
 - sensitivity change under other climate stresses.

Model setup

- CESM2.1.4-rel41 with WACCM6(+TUV)-CLM5-CICE-POP2-MARBL-4p2z.
 - TUV is the Tropospheric Ultraviolet and Visible Radiation Model.
 - \circ 4p2z = 4 phytoplankton and 2 zooplankton; have tested with 3p1z and 4p1z.
- TUV is used to calculate UV radiation at the surface.
 - Cullen et al. (1992) is used to calculate UV damage function for diatoms (already built into TUV).
 - \circ 'UV inhibition' (E^{*}_{inh}) is passed to MARBL
- UV limitation term $[\gamma_{UV}, 0-1]$ is constructed as a function of E*inh(z).

$$\gamma_{UV} = \frac{1}{1 + E^*_{inh}(z)}.$$

Model setup

• UV limitation term $[\gamma_{UV}, 0-1]$ is constructed as a function of E*inh(z).

$$\gamma_{UV} = \frac{1}{1 + E_{inh}^*(z)}.$$

PHOTOSYNTHESIS = PHOTOSYNTHESIS*nutrient_limitation*temperature_limitation*light_limitation

Model setup - water column attenuation

• E*_{inh} is attenuated following an empirical relationship developed by Overmans and Agustí (2020):

k = 0.14*CHL + 0.29 $E_{inh}^{*}(z+1) = E_{inh}^{*}(z) * \exp(-k^{*}dz)$

- E*_{inh}(z) reaches 99% attenuation for most levels of chlorophyll between 15m and 25m.
 - Phytoplankton below 25m will not be impacted by enhanced UV radiation.

Results [preliminary]

- E*_{inh}=0 case (Y_{UV}=1 equivalent) compared to a case with pre-industrial levels of stratospheric ozone ("Normal E*inh") shows extremely minimal effects:
 - \circ 0.34 Pg C yr⁻¹ reduction in NPP in year 2 of an initial spin-up period.
 - Low sensitivity to pre-industrial UV radiation levels.

Results [preliminary]

- E*_{inh}=0 case (Y_{UV}=1 equivalent) compared to a case with pre-industrial levels of stratospheric ozone ("Normal E*inh") shows extremely minimal effects:
 - 0.34 Pg C yr⁻¹ reduction in NPP in year 2 of an initial spin-up period.
- Halogen injection case causes 8.8 Pg C yr⁻¹ (16%) reduction in NPP over 1-year.
 - 15-20% diminishment of ozone from 1000 Tg of Br and Cl.
 - Adapted from asteroid impact simulation that causes global ozone hole.

Results [preliminary] - depth dependence

• Limited depth penetration of UV radiation causes deeper phytoplankton to benefit at the expense of UV-affected surface level phytoplankton.

Globally averaged NPP profiles Halogen Injection - Control

Results [preliminary] - PFT variability

- Variable behavior depending on functional type
 - Diatoms and coccolithophores benefit at the expense of small phytoplankton (usually >50% of all oceanic NPP) and diazotrophs (<10% of all NPP).
 - Diatoms account for ~50% of all NPP, small phytoplankton account for 40% at peak of halogen injection simulation.

coccolithophore CaCo3 : top 50m

Year 2 annual mean.

Results [preliminary] - dependence on # of PFT/zooplankton

Results [preliminary] - PFT dependence

• The contribution

Results - TUVPAR

- TUV model also simulates photosynthetically active radiation (PAR, 400-700 nm), which can be passed to the ocean model.
- MARBL currently assumes PAR is equal to 0.45 * QSW
 - QSW is shortwave radiation received at the surface from the atmosphere.
- TUVPAR reduces PAR compared to old method.

Results - TUVPAR

- TUV model also simulates photosynthetically active radiation (PAR, 400-700 nm), which can be passed to the ocean model.
- MARBL currently assumes PAR is equal to 0.45 * QSW
 - QSW is shortwave radiation received at the surface from the atmosphere.
- TUVPAR reduces PAR compared to old method.

-20.0 -15.0 -10.0 -5.0 -2.5 -1.0 1.0 2.5 5.0 10.0 15.0 20.0 0.45*QSW is greater <=== Δ PAR [W m^{-2}] ===> TUVPAR is greater

Results - TUVPAR

- TUVPAR causes increased productivity during summer at high latitudes.
 - \circ 10 Pg C yr⁻¹ increase in global NPP.
- Sensitivity to different radiation was somewhat expected, but the simulated 20% increase led us to stop using TUVPAR. (for now)

 $-0.200 - 0.150 - 0.100 - 0.050 - 0.025 - 0.010 \quad 0.010 \quad 0.025 \quad 0.050 \quad 0.100 \quad 0.150 \quad 0.200$ $0.45*QSW \text{ is greater } <=== \Delta \text{ NPP [} g \text{ C } yr^{-1} m^{-2} \text{] } ===> \text{ TUVPAR is greater}$

Conclusions

- Low sensitivity to pre-industrial UV radiation in 4p2z
 - Response across 3p1z and 4p1z varies but not significantly.
- Global NPP is somewhat resilient to increased surface UV radiation as phytoplankton communities below 25m thrive at the expense of those closer to the surface.
- Still in somewhat early stages of development, so testing is ongoing.

Future work and potential applications

- Adding in damage functions for coccolithophores as a function of shell thickness:
 - calcium carbonate shells can offer protection from UV-B
 - damage function can be modified as a function of shell thickness
- Is enhanced surface UV radiation after the smoke clears from an asteroid impact a potential mechanism for phytoplankton extinction?
- How will ocean warming and acidification increase susceptibility of phytoplankton to UV radiation?
 - acidification may make it more difficult to form shells
 - increased stratification from warming may trap phytoplankton in areas closer to the surface with higher UV radiation.