
Evaluating impact of tropospheric ozone on plants with improved ozone damage parameterization in CLM5

Jyoti Singh¹, Danica Lombardozzi², Lili Xia¹, and Alan Robock¹, Manuel Lerdau³

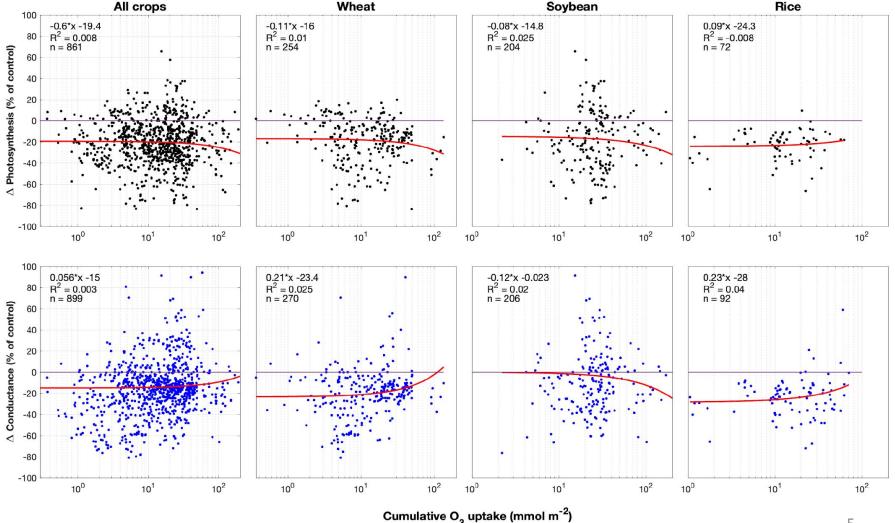
¹Department of Environmental Sciences, Rutgers University, NJ, USA, ²National Center for Atmospheric Research, Boulder, CO, USA 3Department of Environmental Sciences, University of Virginia, VA, USA

Plant response to chronic O₃ stress:

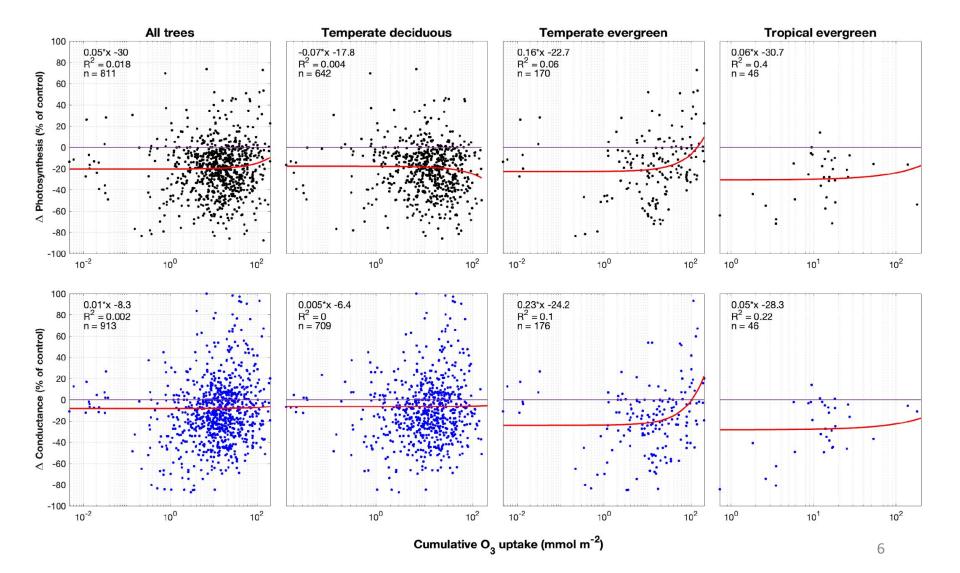
- Excess reactive oxygen species (ROS) production
- **ROS** damages the cell membrane
- Metabolism dysfunction
- Reduced net photosynthesis
- Reduced stomatal conductance
- Reduced carbon assimilation
- Cell death (visible injury)

Ozone damage parameterization in CLM5

- Ozone damage on vegetation in CLM5 is directly and independently influenced by photosynthesis and stomatal conductance based on the cumulative uptake of ozone (CUO) through stomata (Lombardozzi et al., 2015; Lombardozzi et al., 2013; Lawrence, 2019).
- The impact of ozone is estimated for three broad plant functional types (PFTs):
 - 1. Broadleaf trees and shrubs
 - 2. Needleleaf trees and shrubs, and
 - 3. Crops and grasses

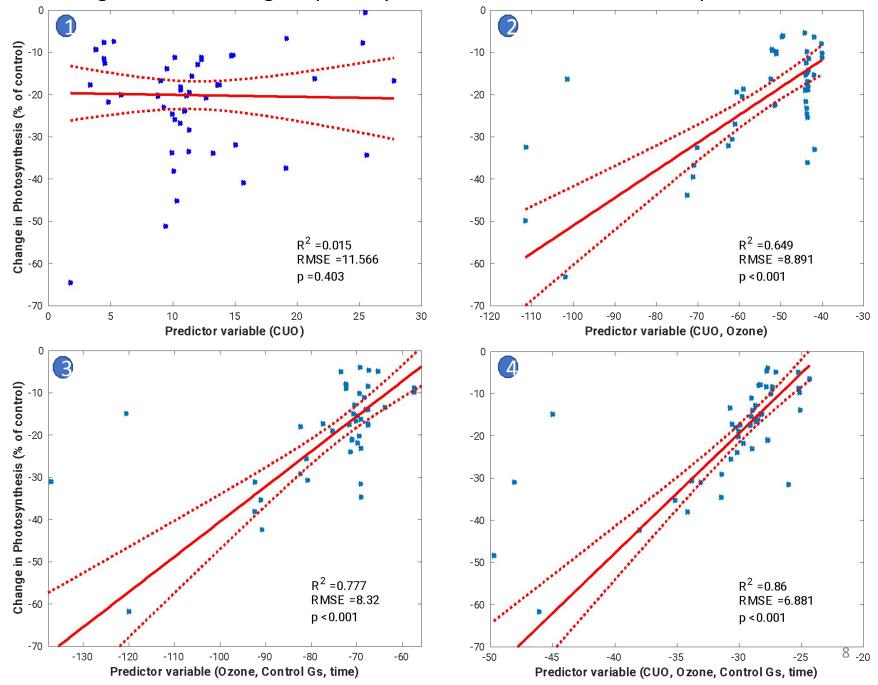

Impact of ozone on photosynthesis in CLM5 Lombardozzi et al. (2013)

Charcoal-filtered air, medium or high confidence data: photosynthesis	n	Mean	p value	Regression	r^2	p value
All data	345	82.1	< 0.001*	$84.34 - 0.10^*x$	0.02	0.01*
Plant type						
Crop	134	77.22	0.05*	$80.21 - 0.09^*x$	0.08	< 0.001*
Evergreen shrub	0	NA	NA	NA	NA	NA
Grasses (C_3 and C_4)	8	80.18	0.87	NS	0.27	0.18
Herbaceous	41	83.27	0.8	NS	0.04	0.2
Temperate deciduous tree	113	87.52	0.22	NS	0.003	0.58
Temperate evergreen tree	47	83.9	0.66	NS	0.08	0.06
Tropical tree	2	44.13	0.19	NA	NA	NA
Plant age (years)						
<1	234	79.71	0.29	$82.55 - 0.11^*x$	0.06	< 0.001*
1-5	95	89.14	0.18	NS	0.002	0.64
> 5	7	81.41	0.93	NS	0.01	0.8
Exposure system						
Greenhouse	24	76.38	0.08	NS	0.08	0.18
Branch chamber	18	88.68	0.07	NS	0.12	0.16
Growth chamber	157	83.54	0.69	NS	0.00002	0.96
Open-top chamber	146	80.68	0.59	$84.48 - 0.11^*x$	0.08	< 0.001*
Free-air enrichment	NA	NA	NA	NA	NA	NA
Rooting Environment						
Pot	271	81.64	0.87	$83.55 - 0.09^*x$	0.01	0.05*
Ground	65	85.63	0.2	$91.74 - 0.19^*x$	0.17	$< 0.001^{*}$
Vulnerability						
Low	58	86.19	0.34	NS	0.01	0.42
High	135	81.52	0.88	NS	0.01	0.16

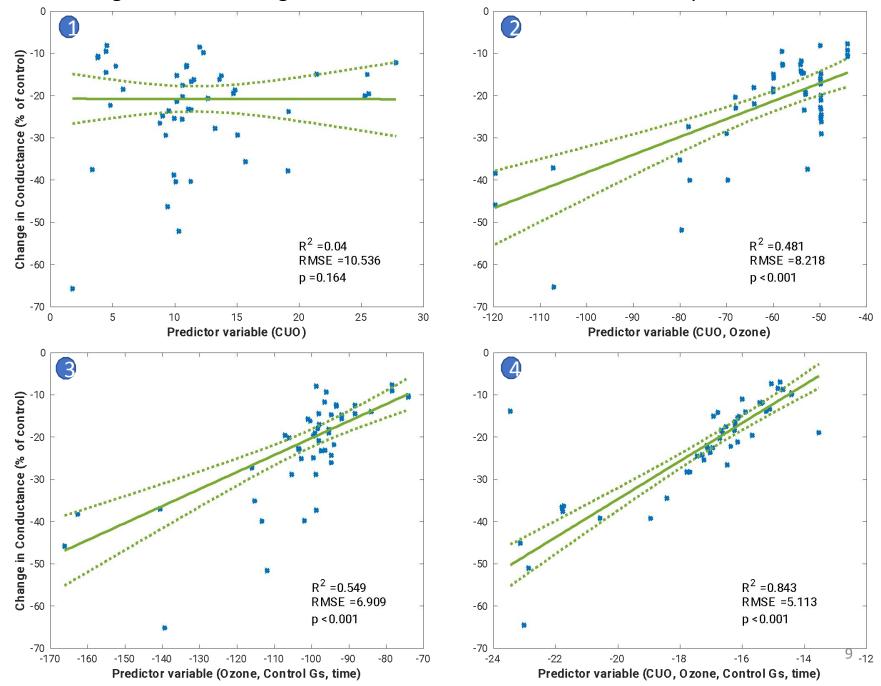

OzoneMod.F90

<pre>integer, parameter :: str integer, parameter :: str</pre>	-							
<pre>! TODO(wjs, 2014-09-29) T ! params file. Parameters ! with a pft dimension.</pre>								e
<pre>! o3:h2o resistance ratio real(r8), parameter :: ko</pre>		et al. 2007						
reat(ro), parameter :: Ko	5 = 1.0/_10							
! LAI threshold for LAIs	that asymptote and	don't reach @						
<pre>real(r8), parameter :: la</pre>								
! threshold below which o	3flux is set to 0	(nmol m^-2 s^-	-1)					
<pre>real(r8), parameter :: o3</pre>	_flux_threshold =	0.8_r8						
		200						
! o3 intercepts and slope								
real(r8), parameter :: ne		= 0.8390_r8						
<pre>real(r8), parameter :: ne real(r8), parameter :: br</pre>		= 0rs = 0.8752 r8						
real(r8), parameter :: br								
real(r8), parameter :: no		= 0.8021 r8						
real(r8), parameter :: no								
					_			
! o3 intercepts and slope	s for conductance							
<pre>real(r8), parameter :: ne</pre>	edleleafCondInt	= 0.7823_r8	! ur	nits	=	unitless		
<pre>real(r8), parameter :: ne</pre>	edleleafCondSlope							
<pre>real(r8), parameter :: br</pre>	oadleafCondInt	= 0.9125_r8	! ur	nits	=	unitless		
real(r8), parameter :: br	<pre>oadleafCondSlope</pre>	= 0r8	! ur	nits	=	per mmol	m^-2	
real(r8), parameter :: no		= 0.7511_r8	! ur	nits	=	unitless		
real(r8), parameter :: no	nwoodyCondSlope	= 0r8	! ur	nits	=	per mmol	m^-2	
! Data is currently only	available for broa	dloof concier	(Dec	- 202	201			
! o3 intercepts and slope		accur species	(00)	2.02	,			
		= 1. r8			1	units =	unitless	
<pre>real(r8), parameter :: ne</pre>		-			1	units =	per mpol	
<pre>real(r8), parameter :: ne real(r8), parameter :: ne</pre>	edleleafJmaxSlope	= 0r8					per mmol	
<pre>real(r8), parameter :: ne real(r8), parameter :: ne real(r8), parameter :: br</pre>	eedleleafJmaxSlope roadleafJmaxInt	= 0r8 = 1r8			ļ	units =	per mmol unitless per mmol	
<pre>real(r8), parameter :: ne real(r8), parameter :: ne</pre>	eedleleafJmaxSlope roadleafJmaxInt roadleafJmaxSlope	= 0r8 = 1r8			!	units = units =	unitless	m^-

The correlation of **photosynthesis** and **stomatal conductance** to **cumulative uptake of O₃ (CUO)** across **category crop types** for all other categories (1970-2022)



The correlation of **photosynthesis** and **stomatal conductance** to **cumulative uptake of O₃ (CUO)** across **category tree types** for all other categories (1970-2022)



Improved correlation with to predict changes in photosynthesis and stomatal conductance under chronic ozone exposure

Regression for change in photosynthesis due to chronic ozone exposure in Rice

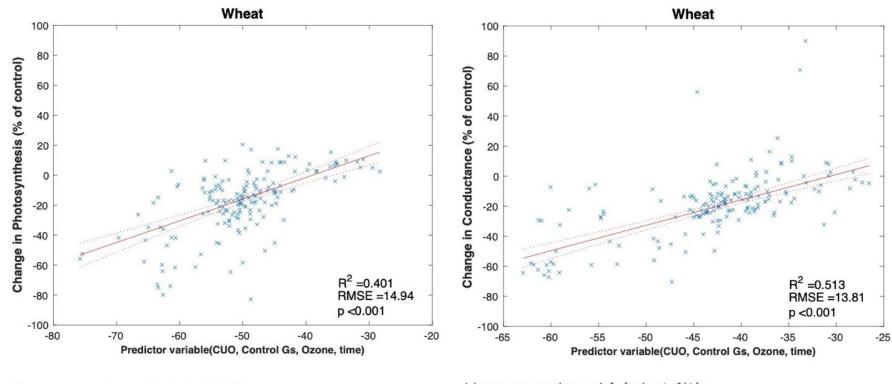
Regression for change in conductance due to chronic ozone exposure in Rice

Improved correlation with to predict changes in photosynthesis

Plant type		CUO			(CU O, Oz	one	Ozone,	Gs, time	2	CUO, time	Ozone,	Gs,
		\mathbb{R}^2	RMSE	p	R ²	RMSE	p	R ²	RMSE	p	R ²	RMSE	p
	7		•			Tree	S			•			
All trees	T	0.01	19.9	*	0.045	20.1	**	0.047	20.2	**	0.046	20.1	**
Temperate deciduous tree		0.012	19.3	0.08	0.045	18.9	*	0.045	19.02	*	0.059	18.8	*
Temperate evergreen tree		0.085	24.1	*	0.086	25.0	*	0.103	26.1	*	0.391	22.4	**
Tropical evergreen tree		0.021	21.6	0.42	0.034	21.9	0.6	0.381	17.8	*	0.752	15.4	**
		•				Crop	DS						
All crops		0	21.4	0.71	0.231	18.8	**	0.258	18.4	**	0.381	17.2	**
Wheat	Ţ	0.05	18.8	*	0.144	18.1	**	0.222	16.9	**	0.401	14.9	**
Soybean		0.005	28.5	0.35	0.307	23.6	**	0.370	22.1	**	0.457	20.5	**
Rice		0.015	11.6	0.40	0.649	8.9	**	0.777	8.2	**	0.860	6.9	**

Improved correlation with to predict changes in photosynthesis

Plant type		CUO			(CU O, Oz	one	Ozone	, Gs, time	e		CUO, time	Ozone,	Gs,
		\mathbb{R}^2	RMSE	p	R ²	RMSE	p	R ²	RMSE	p		\mathbb{R}^2	RMSE	p
	1					Tree	2S	·		•	7			
All trees	Π	0.01	19.9	*	0.045	20.1	**	0.047	20.2	**	1	0.046	20.1	**
Temperate deciduous tree		0.012	19.3	0.08	0.045	18.9	*	0.045	19.02	*		0.059	18.8	*
Temperate evergreen tree		0.085	24.1	*	0.086	25.0	*	0.103	26.1	*		0.391	22.4	**
Tropical evergreen tree		0.021	21.6	0.42	0.034	21.9	0.6	0.381	17.8	*		0.752	15.4	**
						Crop	DS S							•
All crops		0	21.4	0.71	0.231	18.8	**	0.258	18.4	**		0.381	17.2	**
Wheat	Ţ	0.05	18.8	*	0.144	18.1	**	0.222	16.9	**		0.401	14.9	**
Soybean	1	0.005	28.5	0.35	0.307	23.6	**	0.370	22.1	**	1	0.457	20.5	**
Rice		0.015	11.6	0.40	0.649	8.9	**	0.777	8.2	**		0.860	6.9	**


Insights from the preliminary results from the testing of new ozone damage parameterization:

Test experimental Set up:

- Single point (41.63° N, 96.65° W) simulation for 2011-2013
- Spring wheat as dominant PFT
- Ozone damage parametrization for wheat
- For ozone concentrations of 100ppb, 70 ppb and 40 ppb

```
Ozone Parameterization in CLM5
photocoef = intercept + CUO * coef
```

New Ozone Parameterization in CLM5 photocoef = intercept + CUO * coef1 + Gs * coef2 + O₃ * coef3 + time * coef4

Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

Root Mean Squared Error: 13.8

R-squared: 0.513, Adjusted R-Squared: 0.501

Number of observations: 170, Error degrees of freedom: 165

F-statistic vs. constant model: 43.4, p-value = 7.51e-25

Estimated Coeffic	ients:			Estimated Coefficients:					
	Estimate	SE	tStat	pValue		Estimate	SE		
(Intercept)	56.437	7.5074	7.5175	3.3793e-12	(Intercept)	51.789	6.9394		
x1	1.3485	0.19623	6.8719	1.237e-10	×1	1.5624	0.18138		
x2	-0.063854	0.0095745	-6.6692	3.7002e-10	x2	-0.060244	0.00885		
x3	-0.5154	0.057702	-8.9322	7.9151e-16	x3	-0.63506	0.053336		
x4	-0.091575	0.011044	-8.2917	3.7344e-14	×4	-0.082425	0.010209		

Number of observations: 170, Error degrees of freedom: 165 Root Mean Squared Error: 14.9 R-squared: 0.401, Adjusted R-Squared: 0.387 F-statistic vs. constant model: 27.6, p-value = 1.46e-17

13

tStat

7.4631

8.6135

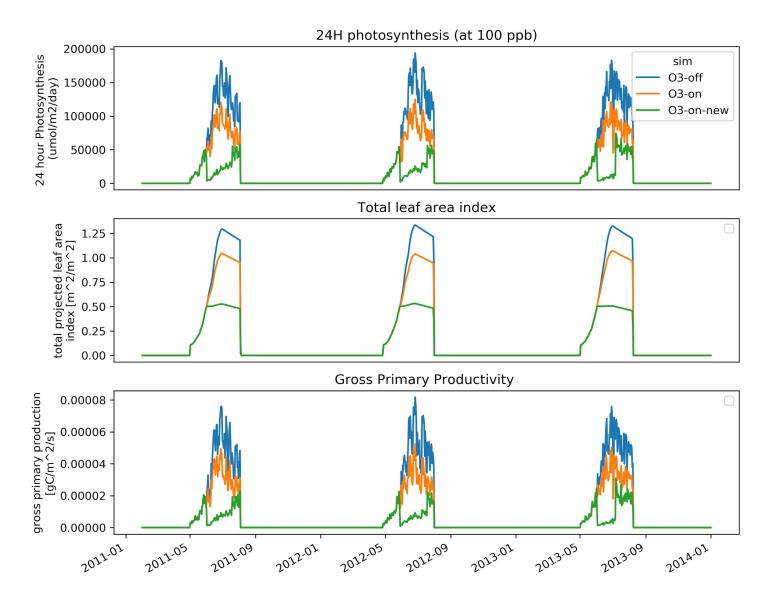
-6.8072

-11.907

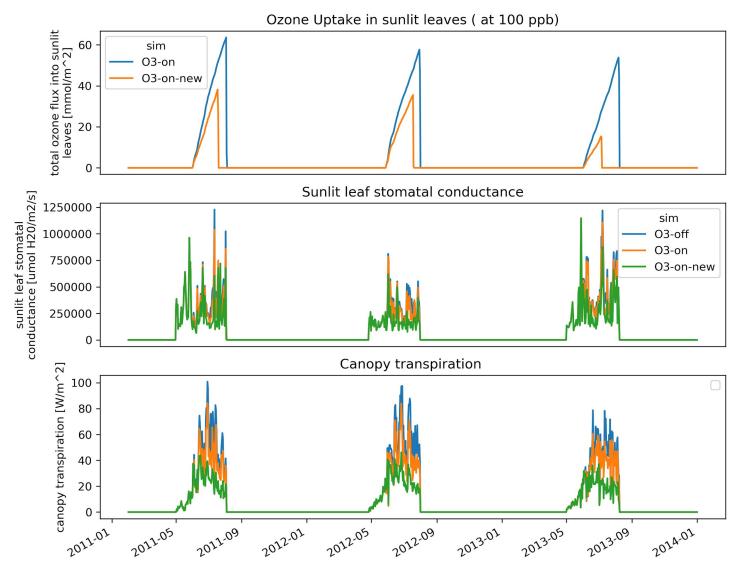
-8.0741

pValue

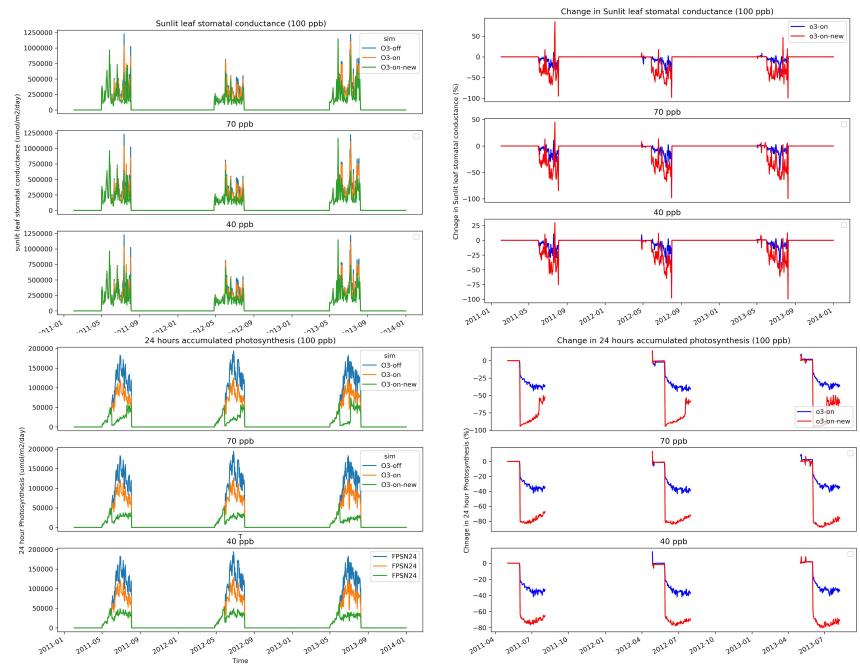
4.605e-12


5.4553e-15

1.7577e-10


5.4591e-24

1.3495e-13


Photosynthesis, TLAI and GPP at 100 pb

O₃ uptake, conductance and canopy transpiration at 100 ppb

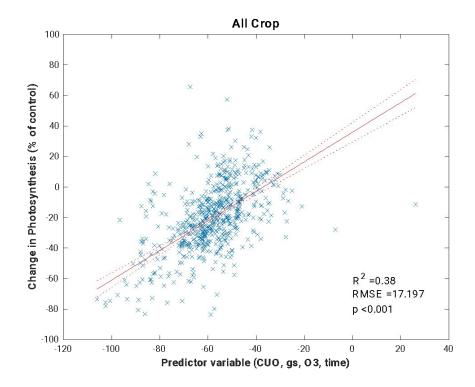
Changes under different ozone concentrations

Findings from the preliminary simulations

- The new ozone parameterization is not very sensitive to change in O₃ for change in photosynthesis and stomatal conductance
- The decrease in photosynthesis is very large compared to stomatal conductance
- One reason might be mismatch between timestep (and possibly variable units) in the parametrization and model
- The sudden drop in photosynthesis seems to be related with spike in plant stomatal conductance
- These might be due to lack of sufficient stomatal conductance data in the observation dataset used to derive the parameterization

Step forward from the preliminary simulations

- Fine-tuning of the parameterization to ensure accurate translation of the derived parameterization from observational data to the model
- The new parameterization introduces four variables, adding complexity to tune the model
- Considering the model's variable units and time frequency to fine tune tune the parameterization
- Regional and global simulations to further refine and tune the parameterization
- Defining upper and lower limit coefficients for the variables in the parameterization
- These limits will help ensure that the parameterization remains within a realistic and feasible range

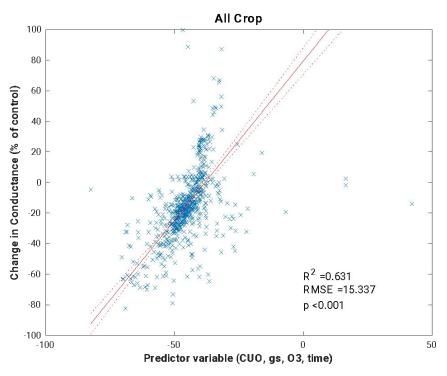

Thank You

Appendices

Categories and levels describing the data collected from experiments studying ozone effects on photosynthesis and stomatal conductance

Category	Categorical	Level					
Plant Type	Crop (81, 903)	Shrub (9, 35)	Grasses (C3 & C4) (5, 11)	Herbaceous (13, 49)	Temperate deciduous tree (84, 775)	Temperate evergreen tree (21, 180)	Tropical evergreen tree (9,48)
Сгор Туре	Wheat	Soybean	Rice	Maize	Pulses	Sugarcane	Cotton
	(30, 276)	(13, 209)	(9, 94)	(2, 26)	(8, 202)	(1,8)	(1,4)
Control Air	Ambient (56,716)	Charcoal filtered (166, 1225)					
Exposure System	Greenhouse (9, 125)	Growth chamber (69, 505)	Open-top chamber (92, 935)	Free-air enrichment (52, 382)			
Ozone conc. bins (ppb)	25 to 50 (11, 159)	50-75 (76, 421)	75-100 (74, 751)	100-125 (13, 197)	125-150 (12, 64)	>150 (7, 44)	
Rooting environment	Pot (163, 1316)	Ground (72, 626)					
Vulnerability to Ozone	Low (42, 230)	Med (99, 890)	High (81, 765)				
Data Confidence	Low (98, 698)	Med (104, 919)	High (14, 84)				

- Data from 235 papers (almost 1600 data points) published from 1970 till the present.
- Data points within the associated categorical level: (# of studies, # of data points).
- For details see Lombardozzi et al. (2013)

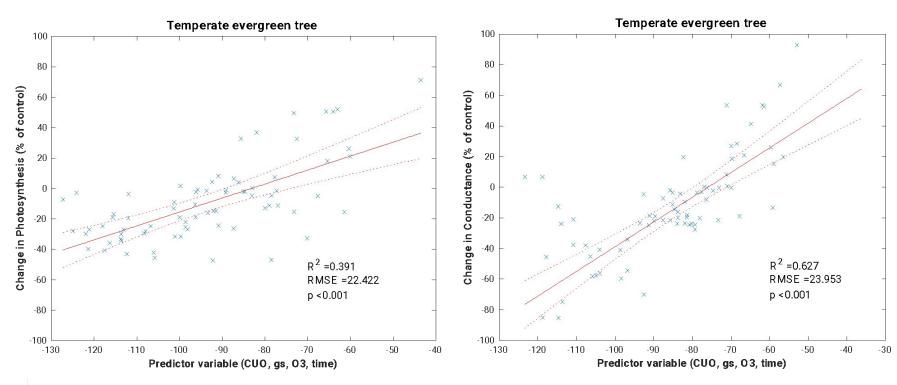


Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	35.916	3.899	9.2114	4.5635e-19
x1	0.7571	0.069149	10.949	1.0932e-25
x2	-0.022521	0.0051473	-4.3754	1.4154e-05
x3	-0.60271	0.034128	-17.661	3.8364e-57
x4	-0.052714	0.0046008	-11.458	8.9825e-28

Number of observations: 644, Error degrees of freedom: 639 Root Mean Squared Error: 17.2 R-squared: 0.38, Adjusted R-Squared: 0.376 F-statistic vs. constant model: 97.7, p-value = 7.34e-65



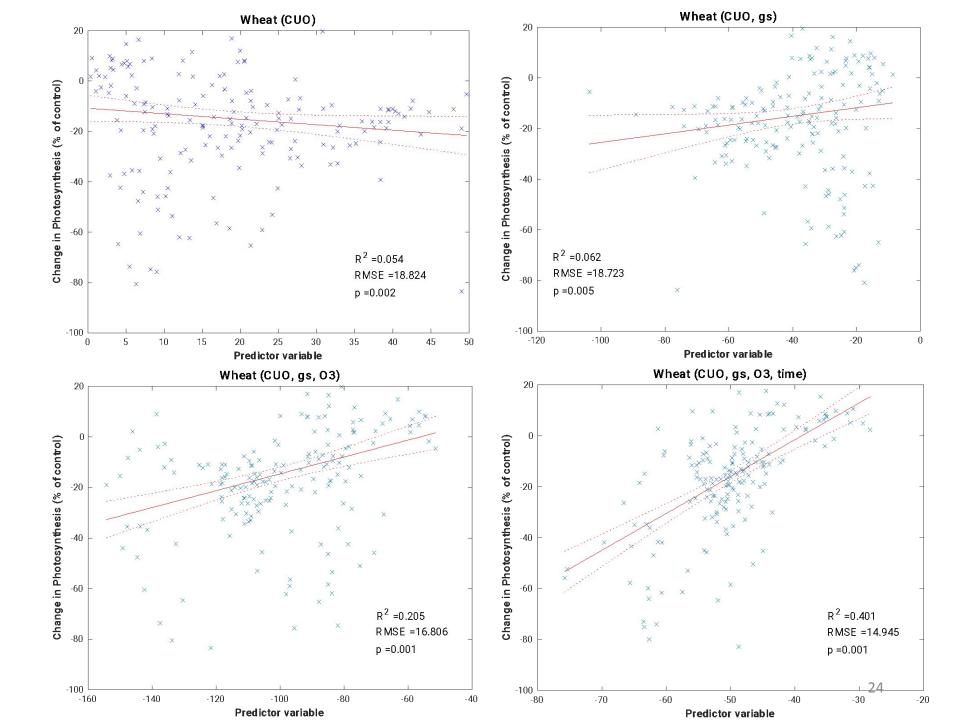
Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

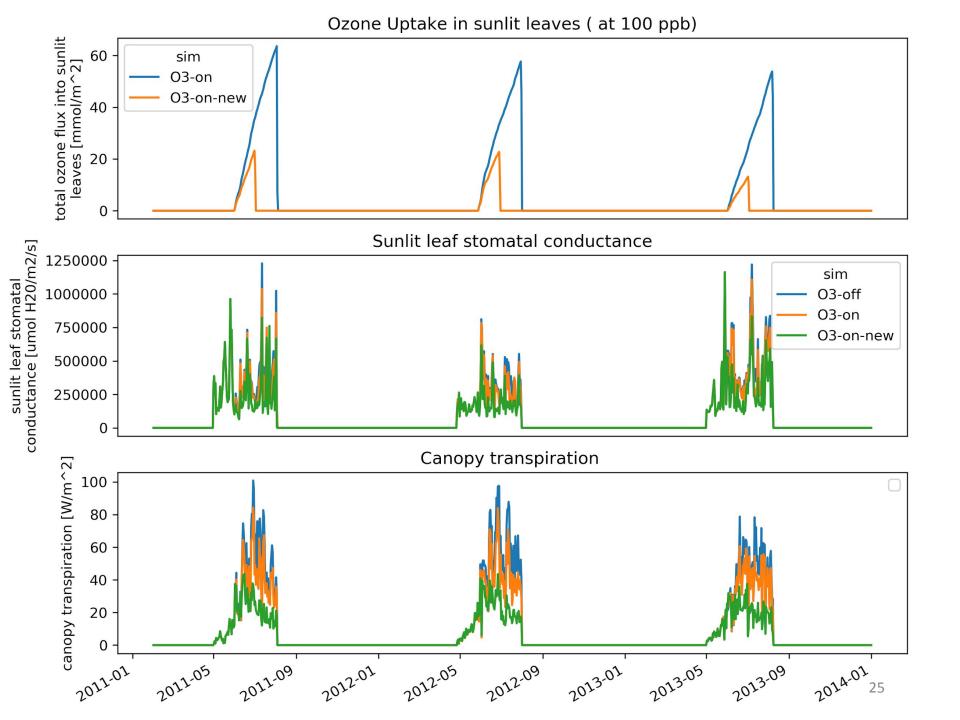
Estimated Coefficients:

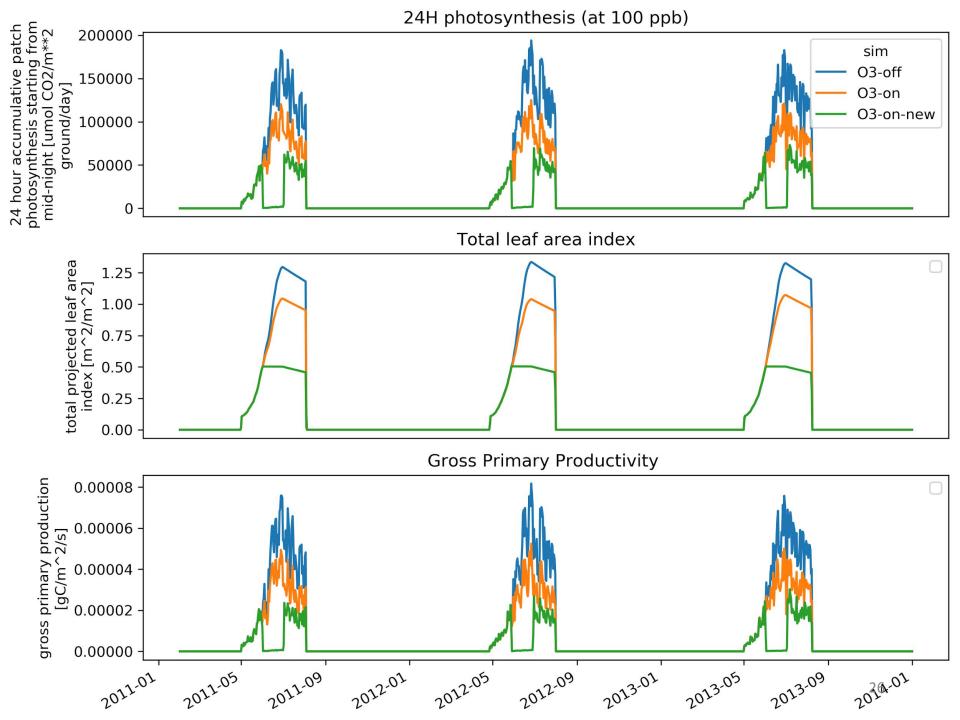
	Estimate	SE	tStat	pValue
(Intercept)	79.447	3.4774	22.847	6.583e-85
xl	1.9443	0.061671	31.527	2.6104e-132
x2	-0.11146	0.0045906	-24.279	9.1678e-93
x3	-0.73252	0.030437	-24.067	1.3452e-91
x4	-0.090727	0.0041032	-22.111	6.8613e-81

Number of observations: 644, Error degrees of freedom: 639 Root Mean Squared Error: 15.3 R-squared: 0.631, Adjusted R-Squared: 0.629 22 F-statistic vs. constant model: 274, p-value = 7.03e-137

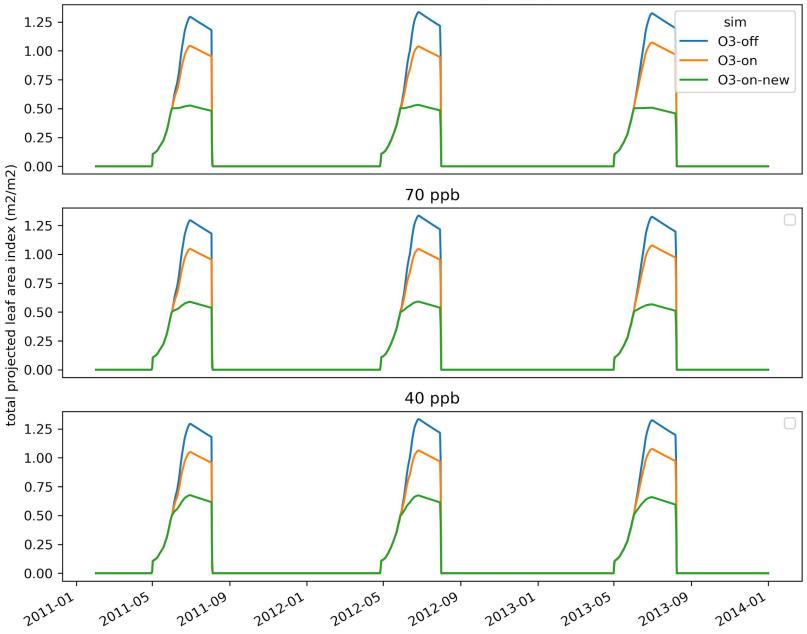
Linear regression model (robust fit): $y \sim 1 + x1 + x2 + x3 + x4$

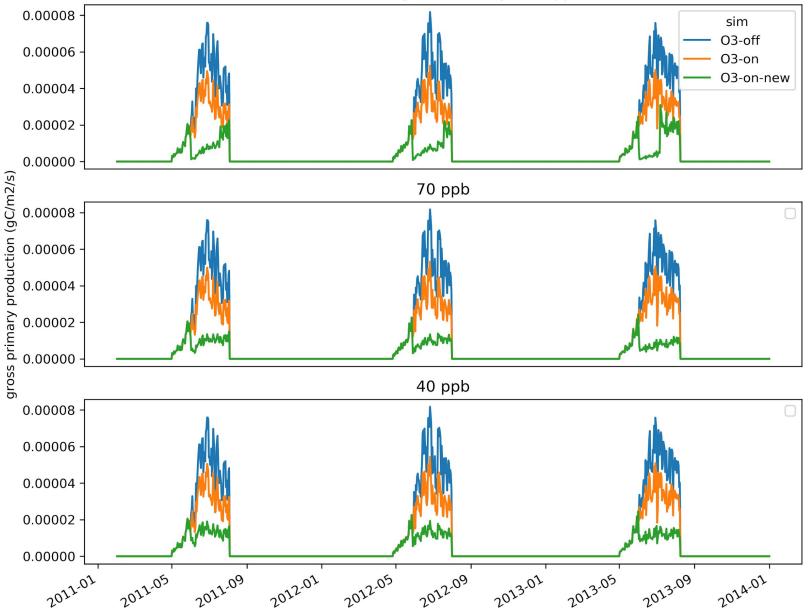

Estimated Coefficients:

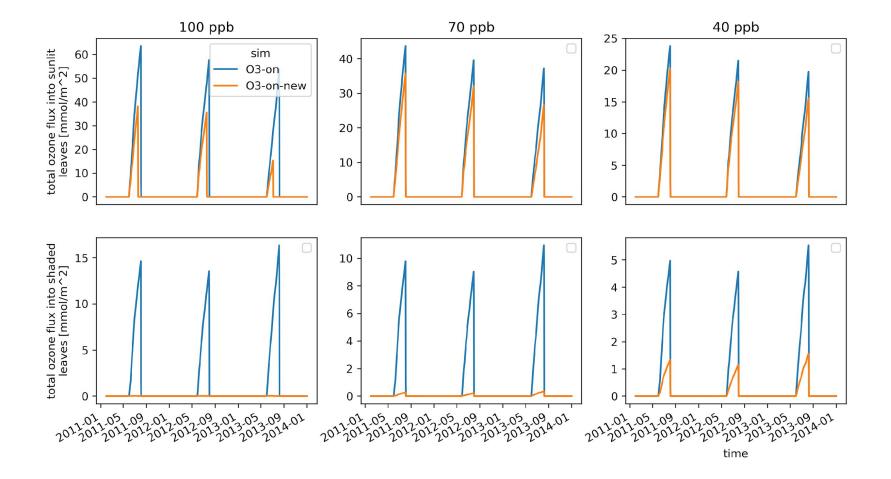

	Estimate	SE	tStat	pValue
(Intercept)	76.377	18.765	4.0702	0.00012032
x1	0.45913	0.084145	5.4564	6.7214e-07
x2	-0.26435	0.042701	-6.1908	3.4436e-08
x3	-0.74932	0.23411	-3.2007	0.0020512
x4	-0.0074396	0.0018736	-3.9707	0.00016967

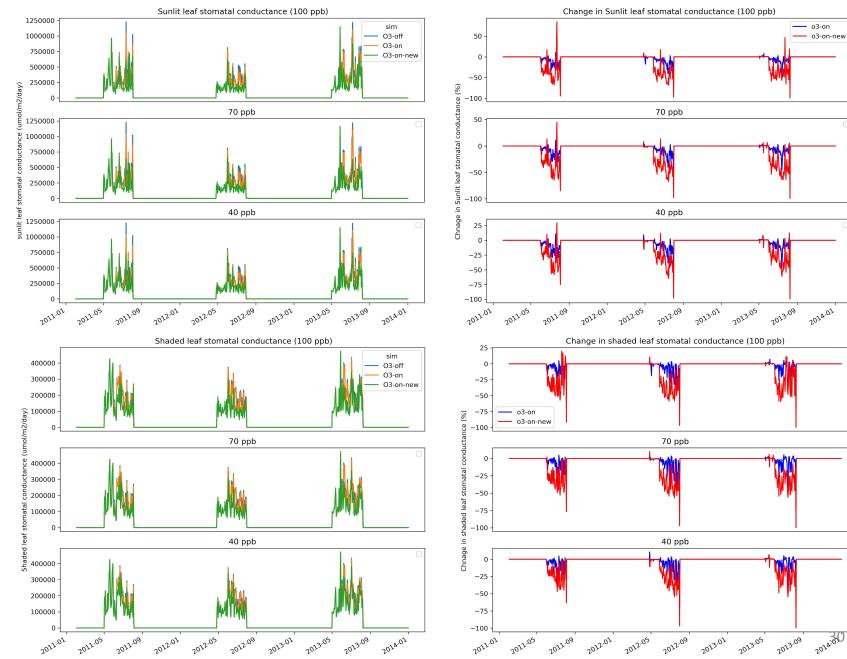

Number of observations: 76, Error degrees of freedom: 71 Root Mean Squared Error: 22.4 R-squared: 0.391, Adjusted R-Squared: 0.357 F-statistic vs. constant model: 11.4, p-value = 3.37e-07 Linear regression model (robust fit): y ~ 1 + x1 + x2 + x3 + x4

Estimated Coeffic	ients:				
	Estimate	Estimate SE		pValue	
(Intercept)	122.64	20.046	6.1179	4.647e-08	
x1	0.69696	0.08989	7.7535	4.7888e-11	
x2	-0.43097	0.045616	-9.4479	3.5107e-14	
x3	-1.391	0.2501	-5.5618	4.4192e-07	
x4	-0.0093298	0.0020015	-4.6613	1.4317e-05	


Number of observations: 76, Error degrees of freedom: 71 Root Mean Squared Error: 24 R-squared: 0.627, Adjusted R-Squared: 0.606 F-statistic vs. constant model: 29.8, p-value = 1.5e-14




Total leaf area index (100 ppb)


Gross Primary Productivity (100 ppb)

Total Ozone flux in sunlit and shaded leaves

Change in sunlit and shaded Stomatal conductance

2014.80

```
! o3:h2o resistance ratio defined by Sitch et al. 2007
real(r8), parameter :: ko3 = 1.67 r8
! LAI threshold for LAIs that asymptote and don't reach 0
real(r8), parameter :: lai_thresh = 0.5_r8
! threshold below which o3flux is set to 0 (nmol m^-2 s^-1)
real(r8), parameter :: o3_flux_threshold = 0.8_r8
! o3 intercepts and slopes for photosynthesis
                                           = 0.8390_r8 ! units = unitless
real(r8), parameter :: needleleafPhotoInt
real(r8), parameter :: needleleafPhotoSlope = 0._r8  ! units = per mmol m^-2
                                           = 0.8752_r8 ! units = unitless
real(r8), parameter :: broadleafPhotoInt
real(r8), parameter :: broadleafPhotoSlope
                                           = 0. r8 ! units = per mmol m<sup>-2</sup>
real(r8), parameter :: nonwoodyPhotoInt
                                            = 0.8021 r8 ! units = unitless
real(r8), parameter :: nonwoodyPhotoSlope
                                           = -0.0009 r8 ! units = per mmol m^-2
! o3 intercepts and slopes for conductance
                                           = 0.7823_r8 ! units = unitless
real(r8), parameter :: needleleafCondInt
real(r8), parameter :: needleleafCondSlope
                                            = 0.0048 r8 ! units = per mmol m^-2
                                           = 0.9125_r8 ! units = unitless
real(r8), parameter :: broadleafCondInt
real(r8), parameter :: broadleafCondSlope
                                            = 0. r8 ! units = per mmol m^-2
real(r8), parameter :: nonwoodyCondInt
                                            = 0.7511_r8 ! units = unitless
real(r8), parameter :: nonwoodyCondSlope
                                           = 0. r8
                                                         ! units = per mmol m^{-2}
character(len=*), parameter, private :: sourcefile = &
```

haracter(len=*), parameter, private :: sourcefile = __FILE__

contains