Deforestation induced land-atmosphere interactions in CESM

Part I: The role of forests in moderating local interannual evapotranspiration variation

Part II: Mean-states dependence of deforestation induced precipitation changes

Min-Hui Lo, Chun-Lien Chiang, Ting-Hui Lee Department of Atmospheric Sciences, National Taiwan University

at Department of Atmospheric Sciences, National Taiwan University

Part I: The role of forests in moderating local interannual evapotranspiration variation

Ting-Hui Lee¹, Min-Hui Lo¹, Chun-Lien Chiang¹, and Yan-Ning Kuo^{1,2} ¹Department of Atmospheric Sciences, National Taiwan University ²Earth and Atmospheric Sciences, Cornell University

Introduction

	Neutral (with prescribed climatology SST)	Precipitation & evapotranspiration decrease	El Nino (with prescribed El Nino-like SST)
Canopy Evaporation	30.78		25.87
Canopy Transpiration	57.41	Increase	66.52
Ground Evaporation	8.52		9.12
forest's Vapotranspiration partitioning			Unit: W/m ²

Data & Method

1981-2014 **Reanalysis & Observation** • ERA5-Land • GLEAM • GPCC **Events:** The Oceanic Niño Index (ONI) El Niño: the 3-month running averaged NIÑO3.4 SSTA \geq 0.5°C for five or more consecutive months La Niña: ≤ -0.5°C. Difference: El Niño – La Niña □ interannual variation

Transpiration's dampening effect

ET: Evapotranspiration CE: canopy evaporation CT: canopy transpiration SE: soil evaporation

95% significant test(*)99% significant test(**)99.9% significant test(***)

For Precipitation (El Niño – La Niña)/Climatology ~ 23.3%

For ET (El Niño – La Niña)/Climatology ~ 1.3% for ERA5 3.2% for GLEAM

Using CLM to test the role of forest in dampening ET variations

Simulation I

Deforestation cut down transpiration's dampening effect and the interannual variability of evapotranspiration will be increased

Unit: mm/day

(C) Control run in darker color(D) Deforestation run in lighter color

95% significant test(*) 99% significant test(**) 99.9% significant test(***)

(El Niño – La Niña)/Climatology2.4% □ 8.3%

Simulation II

	Land types		
CESM2	Rainforest	Bare Soil	
Fully coupled model	(control run)	(deforestation	
40 ensemble (1 year)	El Niño – La Niña	El Niño – La Niña	

The interannual variation of evapotranspiration was increased

Take home message:

The compensating effects of canopy transpiration will dampen interannual variation of total evapotranspiration.

After deforestation, evapotranspiration's interannual variability will increase, but **precipitation's interannual variability decreases.**

95% significant test(*) Unit: mm/day 99% significant test(**) 99.9% significant test(***) HydroClimatology Group

Part II: Mean-states Dependence of Deforestation Induced Precipitation Changes

Chun-Lien Chiang¹, Ting-Hui Lee¹, Yu-Chiao Liang¹, Yan-Ning Kuo², Min-Hui Lo¹

¹Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

²Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, USA

Introduction

A Department of Atmospheric Sciences, National Taiwan University

ENVIRONMENTAL RESEARCH LETTERS

LETTER

The role of El Niño in modulating the effects of deforestation in the Maritime Continent

Ting-Hui Lee and Min-Hui Lo Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan E-mail: minhuilo@ntu.edu.tw

Variables	Neutral Condition (DEF _{Neu} - CTL _{Neu})	El Niño Condition (DEF _{Niño} - CTL _{Niño})	Effect of El Niño
Precipitation	Increase ↑	Increase ↑	Enhancement <mark>↑</mark>
(P)	0.59 mm d ⁻¹	0.79 mm d ⁻¹	0.20 mm d ⁻¹

Under the environment of El Niño phase, precipitation increases are significantly greater than neutral phase

Under the environment of El Niño phase, MSE increases in middle troposphere are significantly greater than neutral phase

Data & Method Fully-coupled Simulation

Experiment

Deforestation experiment conducted by CESM2

Ocean Model

Active

Ensemble member

Macro-perturbation

HydroClimatology Group at Department of Atmospheric Sciences, National Taiwan University

Deforestation-induced precipitation increases are greater in "negative-concave" MSE profile mean-state

- All events are grouped based on corresponding ANO precipitation, and selected by 4 quartiles.
- For the groups with greater ANO precipitation, the climate state in the CTL tend to be drier. It implies a **negative-feedback** relation between CTL and ANO precipitation.

Dependency of Precipitation Response on Climate Mean-states Negative Feedback of Precipitation after Deforestation in the Maritime Continent

Take home message

• After deforestation, the group with a negative-concave MSE mean-state tends to cause a stronger increase in precipitation.

Summary

Evapotranspiration Variability Amplified

• Deforestation disrupts the balance between canopy evaporation and transpiration in tropical forests, amplifying the variation in evapotranspiration and altering local hydrological cycles.

• Deforestation Affects Climate Variability

• Deforestation changes interannual climate variability by increasing precipitation during drier periods, indicating its negative impacts on the local precipitation.

Thank you for your attention

Data & Method

Part 2: Fully-coupled Simulation

