

Irrigation techniques in CESM2: from present-day to future

Implementation of irrigation techniques and creation of projected irrigation techniques shares dataset

Yi Yao*, Wim Thiery et al.

Deadly heatwaves

COP27

Europe's heatwave may have caused more than 20,000 'excess' deaths

By Juliette Portala

November 24, 2022 8:46 PM GMT+1 · Updated 7 months ago

A woman covers her head with a bag as she walks at Puerta del Sol square during a hot day as Spain braces for a heatwave in Madrid, Spain, June 10, 2022. REUTERS/Susana Vera/File Photo

Melbourne to hit 38C and western Sydney 35C as heatwave sweeps parts of Australia

Very warm weather conditions will extend across southern areas and linger until next week, Bureau of Meteorology says
Follow our Australia news live blog for the latest updates
Get our morning and afternoon news emails, free app or daily news podcast

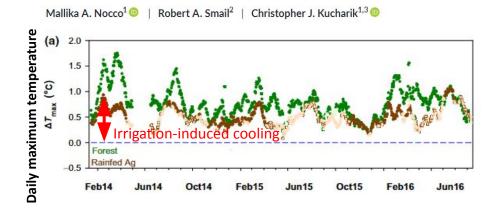
D Melbourne was expected to reach a sweltering 35C degrees on Friday as low-level heatwaves settled in over large parts of Australia. Photograph: Con Chronis/AAP

Climate change is fueling deadly heat waves in India. It's putting the country's development at risk, study says

By <u>Helen Regan</u>, CNN Published 3:33 AM EDT, Thu April 20, 2023

A y 🛛 👁

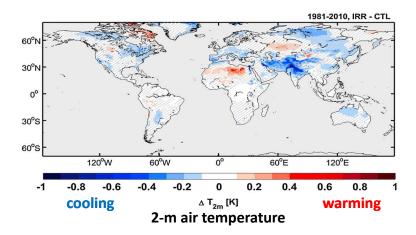
What can irrigation do?


 Received: 21 November 2018
 Accepted: 2 May 2019

 DOI: 10.1111/gcb.14725

PRIMARY RESEARCH ARTICLE

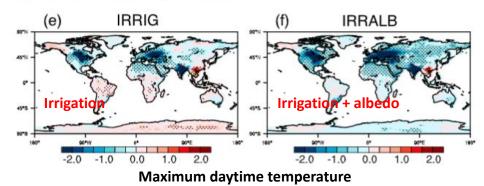
Global Change Biology WILEY


Observation of irrigation-induced climate change in the Midwest United States

Present-day irrigation mitigates heat extremes

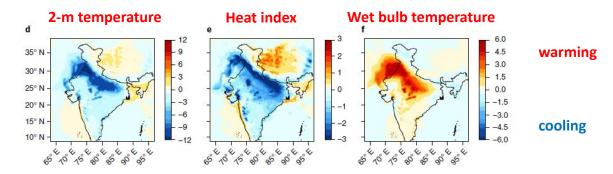
Wim Thiery^{1,2}, Edouard L. Davin¹, David M. Lawrence³, Annette L. Hirsch¹, Mathias Hauser¹, and Sonia I. Seneviratne¹

¹ Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, ²Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium, ³National Center for Atmospheric Research, Boulder, Colorado, USA


Ref:

Nocco, Mallika A., Robert A. Smail, and Christopher J. Kucharik. "Observation of irrigation-induced climate change in the Midwest United States." Global change biology 25.10 (2019): 3472-3484. Thiery, Wim, et al. "Present-day irrigation mitigates heat extremes." Journal of Geophysical Research: Atmospheres 122.3 (2017): 1403-1422.

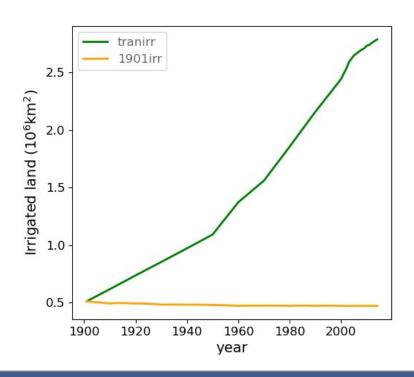
Can climate-effective land management reduce regional warming?

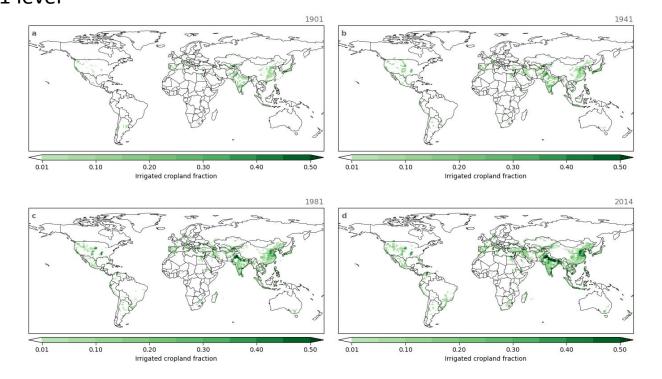

A. L. Hirsch¹ (0), M. Wilhelm¹, E. L. Davin¹, W. Thiery^{1,2} (0), and S. I. Seneviratne¹ (0)

¹Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland, ²Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium

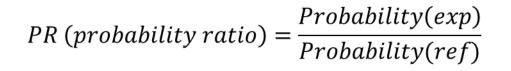
Moist heat stress extremes in India enhanced by irrigation

Vimal Mishra^{1,2}, Anukesh Krishnankutty Ambika^{2,}, Akarsh Asoka^{2,}, Saran Aadhar¹, Jonathan Buzan³, Rohini Kumar⁴ and Matthew Huber³


Hirsch, Annette L., et al. "Can climate-effective land management reduce regional warming?." Journal of Geophysical Research: Atmospheres 122.4 (2017): 2269-2288. Mishra, Vimal, et al. "Moist heat stress extremes in India enhanced by irrigation." Nature Geoscience 13.11 (2020): 722-728.


IRRigation impacts model intercomparison project (IRRMIP)

Objective: impacts of irrigation expansion in 20th century on heat extreme events


Period: 1901 - 2014

Simulations: tranirr – transient irrigation extent AMIP 1901irr – irrigation extent fixed at 1901 level

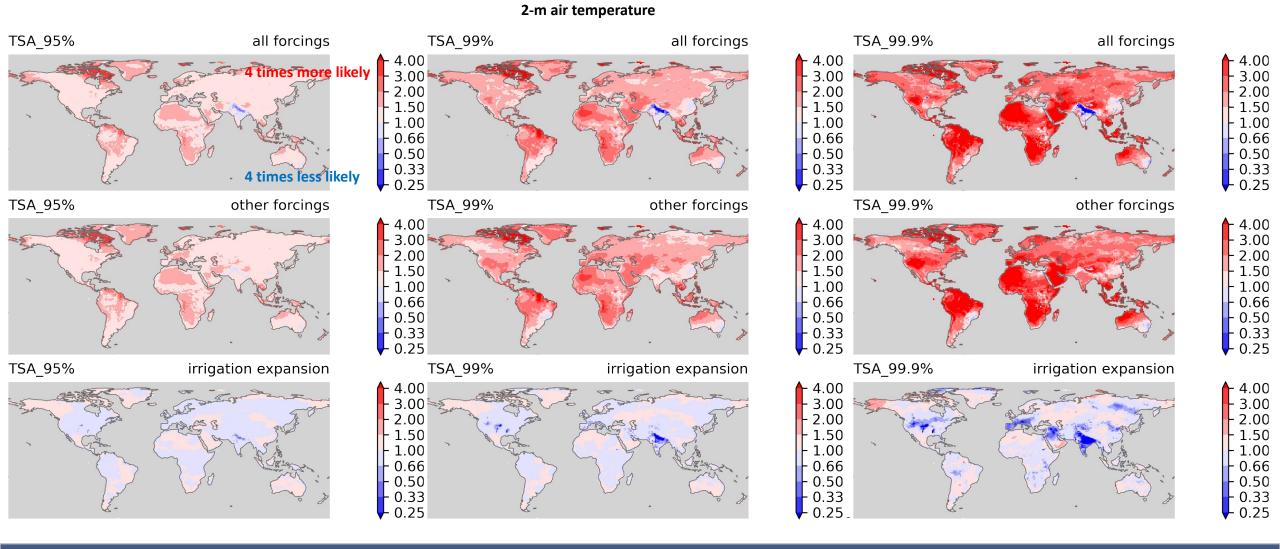
Data analysis for IRRMIP

TSA95%: Events that TSA exceeds 95% percentile during referrence period

PR > 1: Events happen more likely; PR < 1: Events happen less likely

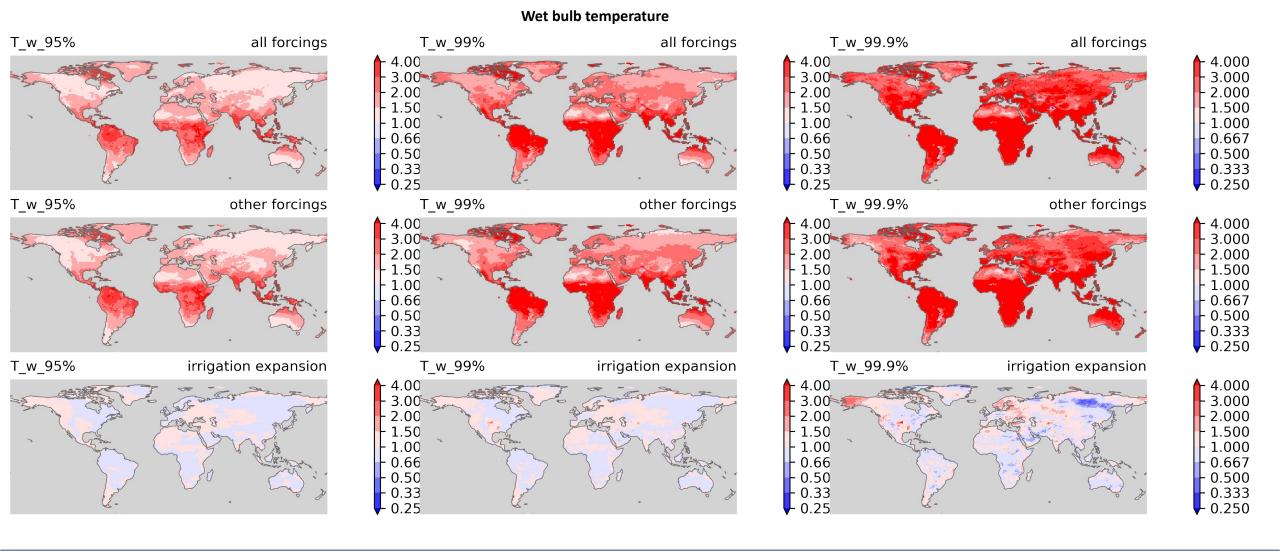
ref: *tranirr* 1901 – 1930 *exp*: *tranirr* 1985 – 2014

Impacts of all forcings

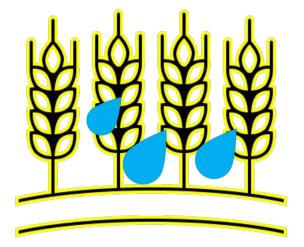

ref: 1901*irr* 1901 – 1930 *exp*: 1901*irr* 1985 – 2014

Impacts of all forcings except irrigation expansion

ref: 1901*irr* 1985 – 2014 *exp*: *tranirr* 1985 – 2014


Impacts of irrigation expansion

Results from CESM2.1


Irrigation can greatly reduce the frequency of high temperature. The more extreme the temperature is, the more substantial the impacts are.

Results from CESM2.1.3

After taking moisture into account, irrigation-induced impacts become unclear. However, we didn't see intensified heat extremes in India. Why?

Representation of irrigation in CESM2.1

When? available soil water less than a threshold

 $SW_{avail} < SW_{thresh}$

How much? target soil water minus available soil water

 $SW_{target} - SW_{avail}$

Where? under canopy = no interception

Implementation of irrigation techniques in CESM2.2

Drip

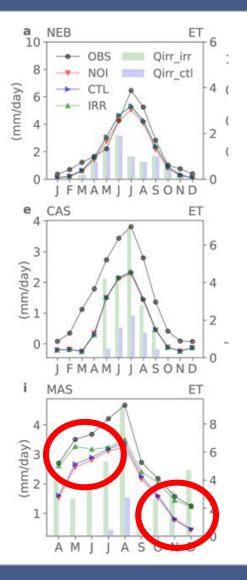
Sprinkler

日本

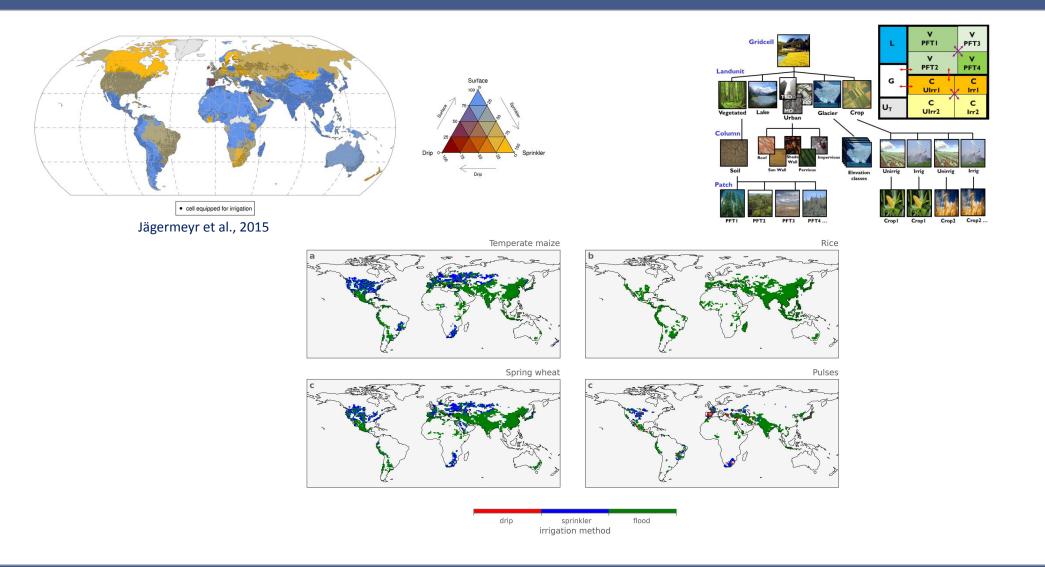
Flood

唐唐唐

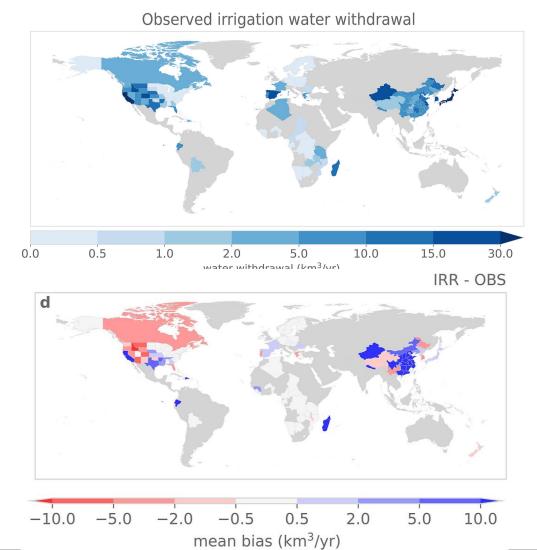
Paddy



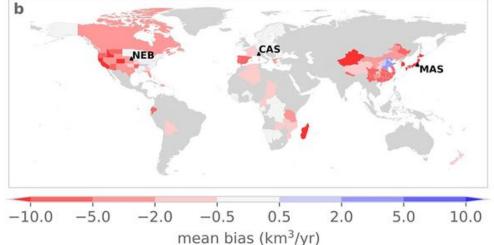
Method	When	How much	Where	Water Ponding
Drip			Under canopy	No
Sprinkler			Over canopy	No
Flood			Under canopy	No
Paddy			Under canopy	Yes


Evaluation 1: single-point simulations

Simulations	Setting	S	
NOI	No irrig	No irrigation activated	
CTL	With th	With the original irrigation module on	
IRR	With the new irrigation module on		
	NEB:	Nebraska, USA, Maize, Sprinkler	
	CAS:	Castellaro, ITA, Maize, Flood	
	MAS:	Mase, JAP, Rice, Paddy	


Sprinkler and flood irrigation have negligible impacts on ET, but paddy irrigation greatly reduce the bias during non-peak seasons

Evaluation 2: global simulations



Jägermeyr, Jonas, et al. "Water savings potentials of irrigation systems:<? xmltex\newline?> global simulation of processes and linkages." Hydrology and Earth System Sciences 19.7 (2015): 3073-3091.

Evaluation 2: global simulations

Bias (CTL - OBS)

CTL	Bias (km³/yr)	RMSE (km³/yr)	IRR	Bias (km ³ /yr)	RMSE (km³/yr)
USA	-10.58	13.42	USA	-0.03	7.94
China	-5.15	7.38	China	22.34	29.84
Other countries	-64.74	78.79	Other countries	-7.67	14.4

New irrigation module substantially improves models' capability of simulating irrigation water withdrawal.

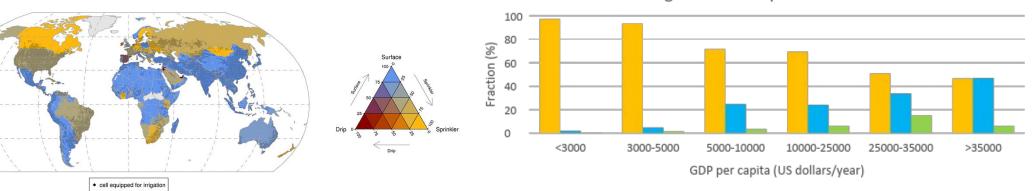
Paper and next step

JAMES Journal of Advances in Modeling Earth Systems"

RESEARCH ARTICLE 10.1029/2022MS003074

Implementation and Evaluation of Irrigation Techniques in the Community Land Model

Key Points:


- A newly-developed irrigation module considering different irrigation methods is implemented in Community Land Model
- The new irrigation scheme shows a better performance of simulating irrigation water withdrawal against the original module

Yi Yao¹ ^(D), Inne Vanderkelen¹ ^(D), Danica Lombardozzi² ^(D), Sean Swenson² ^(D), David Lawrence² ^(D), Jonas Jägermeyr^{3,4,5}, Luke Grant¹, and Wim Thiery¹ ^(D)

¹Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussels, Belgium, ²National Center for Atmospheric Research, Boulder, CO, USA, ³Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany, ⁴Department of Computer Science, University of Chicago, Chicago, IL, USA, ⁵NASA Goddard Institute for Space Studies, New York, NY, USA

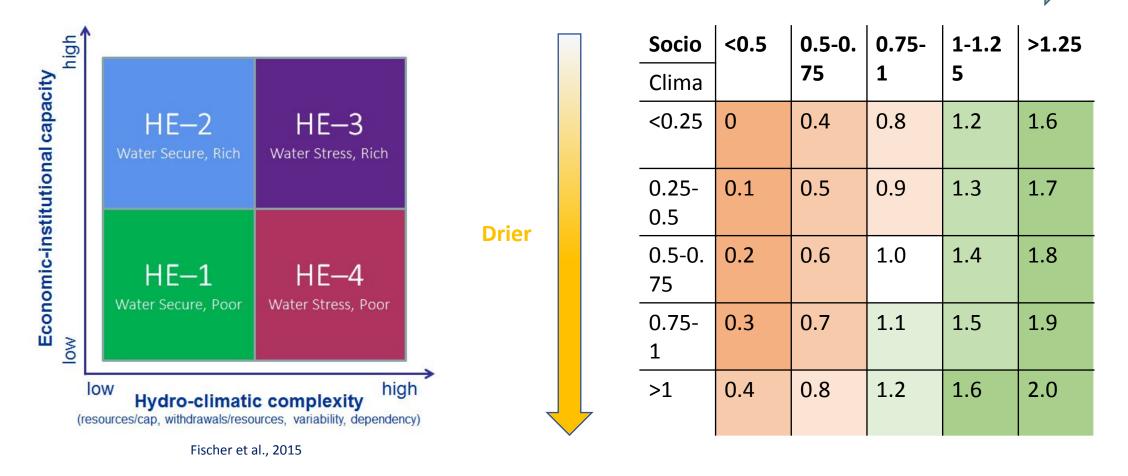
Next: irrigation-induced impacts on heat extremes under future scenarios
Issue 1: there is no projected irrigation techniques shares in line with SSP-RCP
Issue 2: this newly developed irrigation module cannot fully address this question

Projected irrigation techniques shares design

Irrigation techniques fraction

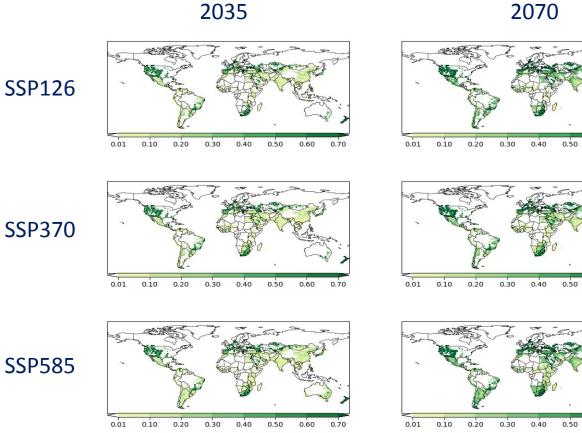
Flood Sprinkler Drip

spearman R	Flood	Sprinkler	Drip
GDP	-0.5252***	0.4803***	0.4155***
	0.5252	0.4005	0.4155
GOV	-0.5302***	0.4625***	0.4676***
URB	-0.4428***	0.3796***	0.3723***
GII	0.4542***	-0.4104***	-0.3063***


-	Spearman R	Flood	Sprinkler	Drip
	PR	0.2709***	-0.211**	-0.2483***
	PPET	-0.0203	0.0761*	-0.1773**
	-	0.0000**	0.4050	
	TWS	0.2082**	-0.1353	-0.3112***

Explained variance					
Socio-economic					
0.782	0.120	0.064	0.034		

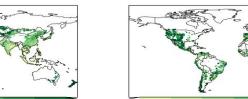
Irrigation techniques shares have correlation with GDP, GOV, URB, GII and PR


Projected irrigation techniques shares design

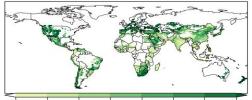
Richer

We update the speed every five years when we have both data for Socio-economic and hydro-climatic values Fischer, Günther, et al. "Towards indicators for water security-A global hydro-economic classification of water challenges." (2015).

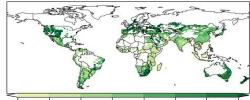
Example: sprinkler irrigation fraction

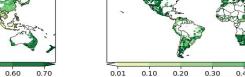

2070

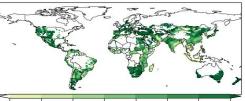
0.60


0.60

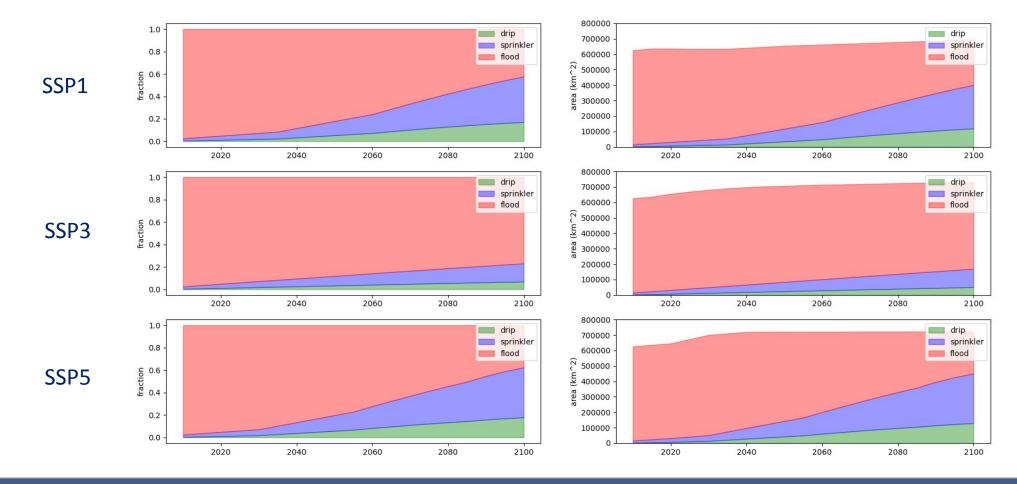
0.70


0.70

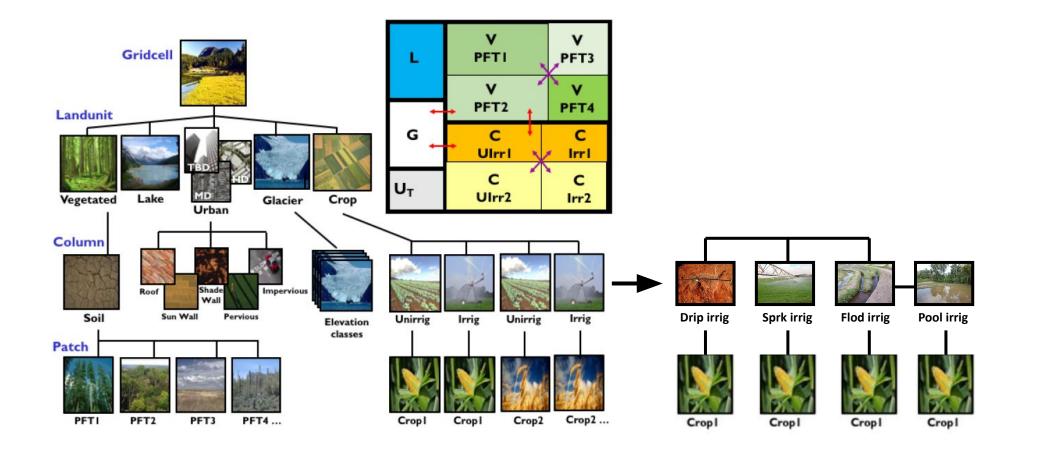



0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70

0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70



0.01 0.20 0.30 0.40 0.50 0.10 0.60 0.70


Example: national irrigation techniques shares for India

India

These datasets have been implemented in landuse timeseries data for SSP1-2.6, SSP3-7.0 and SSP5-8.5.

Ongoing development

- 1. While taking moisture into account, the impacts of irrigation on heat extremes may be different. A model Intercomparison project (IRRMIP) is ongoing to help us better answer this question.
- 2. The newly developed irrigation module improve the model both at single-point and global scale. We are working on expanding its ability.
- 3. A project irrigation techniques shares dataset is created. Feel free to discuss with me (<u>vi.vao@vub.be</u>). We anticipate to have the irrigation-induced impacts under future scenarios in few months. (I have to)
- 4. If you do model development, think carefully what questions you want to address in advance 🙁

Acknowledgement

bClimate CESM group

Wim Thiery

NCAR

Vanderkelen

Steven De Hertog

Sabin Taranu

David Lawrence

Bill Danica Lombardozzi Sacks

Sean Swenson

Will Wieder

Peter Lawrence

Erik Kluzek

Gary Strand