

Interactions between natural short-lived halogens and short-lived climate forcers (ozone, methane and aerosols)

Alfonso Saiz-Lopez¹, Rafael P. Fernandez^{1,2}, Qinyi Li¹, Carlos A. Cuevas¹, Xiao Fu³, Douglas E. Kinnison⁴, Simone Tilmes⁴, Anoop S. Mahajan⁵, Juan Carlos Gómez Martín⁶, Fernando Iglesias-Suarez⁷, Ryan Hossaini⁸, John M. C. Plane⁹, Gunnar Myhre¹⁰ and Jean-François Lamarque¹¹

¹Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, CSIC, Madrid, Spain ²Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza, Argentina ³Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, China ⁴Atmospheric Chemistry Observations & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA ⁵Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, India ⁶Instituto de Astrofísica de Andalucía, CSIC, Spain

⁷Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany ⁸Lancaster Environment Centre, Lancaster University, Lancaster, UK

⁹School of Chemistry, University of Leeds, Leeds, UK

¹⁰CICERO Center for International Climate Research, Norway

¹¹Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH₃I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv
HOI/I ₂	1 min	hv

Oceans are the main source of Short-Lived Halogens (SLH)

Biologically and photochemically produced

Different lifetimes determine their atmospheric impact

Saiz-Lopez and von Glasow, Chemical Society Reviews, 2012

Saiz-Lopez and von Glasow, Chemical Society Reviews, 2012

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
$\rm CH_2Br_2$	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv
HOI/I ₂	1 min	hv
	↓	

Saiz-Lopez and von Glasow, Chemical Society Reviews, 2012

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
$\rm CH_2Br_2$	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv
HOI/I ₂	1 min	hv
	↓	

Saiz-Lopez and von Glasow, Chemical Society Reviews, 2012

Introduction: Halogen chemistry

Short-lived halogens (T < 6 months)

Source gas	Local Lifetime (WMO, 2010)	Main loss
CH ₂ BrCl	137 days	OH, hv
CH_2Br_2	123 days	OH, hv
CHBrCl ₂	78 days	OH, hv
CHBr ₂ CI	59 days	hv, OH
CHBr ₃	24 days	hv, OH
CH ₃ I	7 days	hv, OH
CH ₂ ICI	~ 2–3 h	hv
CH ₂ IBr	~1 h	hv
CH_2I_2	~ 5 min	hv
HOI/I ₂	1 min	hv
	¥	

Introductory conclusion: halogen chemistry affects oxidizing capacity even at parts per trillion levels (10⁻¹²)

Saiz-Lopez and von Glasow, Chemical Society Reviews, 2012

Troposphere

Natural halogens reduce global tropospheric ozone by 13-20%, particularly over oceans and polar regions

Saiz-Lopez et al., *Science*, 2007 Read et al., *Nature*, 2008 Navarro et al, *PNAS*,2016 Benavent et al., *Nature Geoscience*, 2022

Natural halogens (I, Br, Cl)

OCEAN

Biosphere

ICE

Troposphere (CAM-Chem)

21st century Ozone loss due to halogens (%) 20 - Global (km) (%) -20 00 - cliVSI Height - obsVS cli+bioVS Europe and Mediterranean Se 20 30N 0 (%) [€]0∇ –40 – 75 50 100 -60

Natural halogens reduce global tropospheric ozone by 13-20%, particularly over oceans and polar regions

Saiz-Lopez et al., Science, 2007 Read et al., Nature, 2008 Navarro et al, PNAS,2016 Benavent et al., Nature Geoscience, 2022

308

25

(hPa) 150

Pressure

200 250

300

400

500 700 850

Iglesias-Suarez et al., Nature Climate Change, 2020

AIR QUALITY Natural control on ozone pollution

ICE

news & views

Natural halogens (I, Br, Cl)

OCEAN

Biosphere

Stratosphere (WACCM)

ICE

Conclusions: i) halogens are key for the future ozone in this region

ii) Antropogenic short-lived chlorocarbons should be regulated in the Montreal Protocol

Halogens amplify (25%) ozone depletion trends in the tropical lower stratosphere

Villamayor et al., Nature Climate Change, 2023

Natural halogens (I, Br, Cl)

Biosphere

Stratosphere (WACCM)

Short-lived halogens have an effect on the short-lived climate forcers.....<u>so</u>, what is the effect of natural halogens on the radiative balance?

Effect on the global radiative balance

Halogens in CESM

Halogens **increase** methane and its radiative effect

Effect on the global radiative balance

Halogens in CESM

Effect on the global radiative balance

Halogens in CESM

Saiz-Lopez et al., Nature, in press

Effect on the global radiative balance: aerosols

a) OH difference (pre-industrial, %)

c) OH difference (present-day, %)

b) OH difference (pre-industrial, %)

d) OH difference (present-day, %)

30N

60N

90N

0

latitude

Halogens globally **reduce** OH (ozone is the main precursor of OH) and as a consequence they reduce the OH-driven secondary aerosol formation.

Less aerosol formation leads to less aerosol cooling. **Therefore, halogens reduce indirectly the aerosol cooling.**

Halogens in CESM

Summary of radiative effect

*Stratospheric water vapour is driven by chemical oxidation of methane.

Saiz-Lopez et al., Nature, in press

Summary of radiative effect

*Stratospheric water vapour is driven by chemical oxidation of methane.

Saiz-Lopez et al., Nature, in press

03

CH₄

SO42

SOA

Gases

Net

Summary of radiative effect

Three categories of halogen emissions

Pre-industrial:

- **Natural:** Natural emissions, strongly linked to climate
- H₂O^{strat} (depend on SST, primary productivity,

lifting of SSA by winds and sea ice extent)

Present and Future: NH, NO2

AANE: Anthropogenically-amplified natural emissions (depend on O₃ deposition to oceans and atmospheric acidification) Aerosols

ANT: Anthropogenic emissions (e.g. CH₂Cl₂, CHCl3....

not controlled by Montreal Protocol) Inorganic halogen burden is larger at present wrt PI:

147-187% for chlorine 8-9% for bromine 24-29% for iodine

AANE: Anthropogenically-amplified natural emissions

Evolution of iodine levels in the atmosphere (Ice core observations at Renland, Greenland)

Evolution of iodine levels in the atmosphere

Ozone pollution and sea ice decrease have tripled iodine emissions since mid-XX century

Prados-Román et al., ACP, 2015

Spatial distribution of RE in present and future relative to PI

ARE of ozone remains relatively constant although depending on future climate projections

ΔRE of aerosols is highly
non-linear across aerosol types
(sulphate dominates the signal), time
and space depending on future
anthropogenic emissions.

Spatial distribution of RE in present and future relative to PI

RE in present and future relative to PI

The overall conclusion is that **net halogen-driven cooling effect has been amplified since PI due to AANE** and is expected to future change towards the future depending on climate and socioeconomic development.

Natural halogens exert an indirect cooling effect on climate

The changing indirect cooling effect of natural halogens across pre-industrial, present and future climates results from the complex non-linear chemical interactions between halogens and the abundance of key chemically active SLCF

This newly identified cooling mechanism is not accounted for in current climate models such as those used in CMIP or IPCC assessments.

CESM is the only climate model with a full representation of SLH sources and chemistry.

Conclusions

- We have identified that natural halogen chemistry exert a substantial indirect cooling effect on climate that arises from highly non-linear interactions with short-lived climate forcers (ozone, methane, aerosols and stratospheric water vapour).
- Importantly, this cooling effect has increased since pre-industrial times driven by the anthropogenic amplification of natural halogen emissions.

Effect on the global radiative balance: aerosols

The aerosol radiative effect (RE) response is highly non-linear across aerosol types, time and space.

Halogens in CESM

Summary of radiative effect

Latitudinal variation of halogen-driven radiative effect

Aerosols

CH4

Net

O3

Cooling effect of halogens peaks at high latitudes (up to 3 times larger than over tropics).

(0-30N)

(30N-60N) (60N-90N)

(30S-0)

*Stratospheric water vapour is driven by chemical oxidation of methane.

Saiz-Lopez et al., Nature, in press